
IMS

IMS Java Guide and Reference

Version 9

SC18-7821-05

���

IMS

IMS Java Guide and Reference

Version 9

SC18-7821-05

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

175.

Fifth Edition (December 2006) (Softcopy Only)

This edition replaces or makes obsolete the previous edition, SC18-7821-04. This edition is available in softcopy

format only. The technical changes for this version are summarized under “Summary of Changes” on page xv.

© Copyright International Business Machines Corporation 2000, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures vii

Tables ix

About This Book xi

Prerequisite Knowledge xi

IBM Product Names Used in This Information . . . xi

How to Read Syntax Diagrams xiii

How to Send Your Comments xiv

Summary of Changes xv

Changes to the Current Edition of This Book for

IMS Version 9 xv

Changes to This Book for IMS Version 9 xv

Library Changes for IMS Version 9 xvii

New and Revised Titles xvii

Organizational Changes xvii

Terminology Changes xvii

Accessibility features for IMS xviii

Accessibility features xviii

Keyboard navigation xviii

IBM and accessibility xviii

Chapter 1. Getting Started with IMS Java 1

IMS Java System Requirements 1

Installing IMS Java 2

Downloading Apache Open Source XML Libraries . . 3

Administering IMS Java 4

IMS Java Class Library Summary 5

General Restrictions for Applications 6

Where to Find More Information about IMS Java . . 6

Chapter 2. JMP and JBP Applications . . 9

Running the IMS Java IVP in a JMP Region . . . 10

Running the IMS Java IVP in a JBP Region 12

Running the IMS Java Sample Application from a

JMP Region 14

Configuring JMP and JBP Regions for DB2 UDB for

z/OS Database Access 16

Developing JMP Applications 17

Subclassing the IMSFieldMessage Class to Define

Input Messages 18

Subclassing the IMSFieldMessage Class to Define

Output Messages 18

Implementing the main Method 19

JMP Programming Models 20

JMP Application Without Rollback 20

JMP Application that Uses Rollback 21

JMP Application that Accesses IMS or DB2

UDB for z/OS Data 21

Additional Message Handling Considerations for

JMP Applications 22

Conversational Transactions 22

Handling Multi-Segment Messages 24

Coding and Accessing Messages with

Repeating Structures 25

Flexible Reading of Multiple Input Messages 26

Developing JBP Applications 28

Symbolic Checkpoint and Restart 28

JBP Programming Models 29

JBP Application without Rollback 29

JBP Application with Symbolic Checkpoint

and Restart 29

JBP Application using Rollback 30

JBP Application that Accesses DB2 UDB for

z/OS or IMS Data 30

Enterprise COBOL Interoperability with JMP and

JBP Applications 31

Enterprise COBOL as a Back-End Application in

a JMP or JBP Region 32

Enterprise COBOL as a Front-End Application in

a JMP or JBP Region 32

Performance Consideration for OO COBOL in a

JMP or JBP Region 33

Recommendation against Accessing Databases

with Both Java and COBOL 33

Accessing DB2 UDB for z/OS Databases from JMP

or JBP Applications 34

Program Switching in JMP and JBP Applications . . 35

Immediate Program Switching for JMP and JBP

Applications 35

Deferred Program Switching for Conversational

JMP Applications 35

Chapter 3. WebSphere Application

Server for z/OS Applications 37

Configuring WebSphere Application Server for z/OS

for IMS Java 38

Configuring WebSphere Application Server V5

for z/OS 39

Configuring WebSphere Application Server V5

for z/OS to Access IMS 39

Adding the Required XML Files to the

WebSphere Application Server V5 for z/OS

Classpath 39

Installing the IMS JDBC Resource Adapter on

WebSphere Application Server V5 for z/OS . 40

Installing the Custom Service on WebSphere

Application Server V5 for z/OS 41

Configuring WebSphere Application Server V6

for z/OS 42

Configuring WebSphere Application Server V6

for z/OS to Access IMS 42

Installing the IMS JDBC Resource Adapter on

WebSphere Application Server V6 for z/OS . 43

Installing the Custom Service on WebSphere

Application Server V6 for z/OS 43

Running the IMS Java IVP on WebSphere

Application Server for z/OS 44

© Copyright IBM Corp. 2000, 2006 iii

||
||
||
||

||

 | |

 | |
 |
 | |
 |
 | |

 |
 |
 | |

Running the IMS Java IVP on WebSphere

Application Server V5 for z/OS 45

Installing the Data Source for the IMS Java

IVP on WebSphere Application Server V5 for

z/OS 45

Installing the IMS Java IVP on WebSphere

Application Server V5 for z/OS 46

Adding the XML Files to the IVP Classpath on

WebSphere Application Server V5 for z/OS . 47

Testing the IMS Java IVP on WebSphere

Application Server V5 for z/OS 48

Running the IMS Java IVP on WebSphere

Application Server V6 for z/OS 48

Installing the Data Source for the IMS Java

IVP on WebSphere Application Server V6 for

z/OS 49

Installing the IMS Java IVP on WebSphere

Application Server V6 for z/OS 50

Testing the IMS Java IVP on WebSphere

Application Server V6 for z/OS 50

Running the IMS Java Sample Applications on

WebSphere Application Server for z/OS 51

Running the IMS Java Sample Applications on

WebSphere Application Server V5 for z/OS . . 52

Installing the Data Source for the IMS Java

Samples on WebSphere Application Server V5

for z/OS 52

Installing the IMS Java Sample Applications

on WebSphere Application Server V5 for z/OS 54

Testing the IMS Java Sample Applications on

WebSphere Application Server V5 for z/OS . 55

Running the IMS Java Sample Applications on

WebSphere Application Server V6 for z/OS . . 56

Installing the Data Source for the IMS Java

Samples on WebSphere Application Server V6

for z/OS 56

Installing the IMS Java Sample Applications

on WebSphere Application Server V6 for z/OS 57

Testing the IMS Java Sample Applications on

WebSphere Application Server V6 for z/OS . 58

Running Your Applications on WebSphere

Application Server for z/OS 59

Running Your Applications on WebSphere

Application Server V5 for z/OS 60

Setting the WebSphere Application Server V5

for z/OS Classpath 60

Installing the Data Source for Your

Application on WebSphere Application Server

V5 for z/OS 60

Installing Your Application on WebSphere

Application Server V5 for z/OS 61

Adding the XML Files to the Application

Classpath on WebSphere Application Server

V5 for z/OS 62

Enabling J2EE Tracing with WebSphere

Application Server V5 for z/OS 63

Running Your Applications on WebSphere

Application Server V6 for z/OS 65

Setting the WebSphere Application Server V6

for z/OS Classpath 65

Installing the Data Source for Your

Application on WebSphere Application Server

V6 for z/OS 65

Installing Your Application on WebSphere

Application Server V6 for z/OS 67

Enabling J2EE Tracing with WebSphere

Application Server V6 for z/OS 67

Developing Enterprise Applications that Access IMS

DB 69

Bean-Managed EJB Programming Model . . . 69

Transaction Demarcation Using the

javax.transaction.UserTransaction Interface . . 69

Transaction Demarcation Using the

java.sql.Connection Interface 70

Container-Managed EJB Programming Model . . 71

Servlet Programming Model 71

Programming Requirements for WebSphere

Application Server for z/OS 72

Deployment Descriptor Requirements for IMS

Java 72

Chapter 4. Remote Data Access with

WebSphere Application Server

Applications 75

Downloading IMS Java Files for Remote Database

Services 77

Configuring the Application Servers for IMS Java

Remote Database Services 77

Configuring the V5 Application Servers for IMS

Java Remote Database Services 78

Mapping Hostnames for the Client and Server 78

Installing the Data Source on WebSphere

Application Server V5 for z/OS 78

Installing the EAR file on WebSphere

Application Server V5 for z/OS 79

Adding the XML Files to the EAR Classpath 80

Installing the IMS Distributed JDBC Resource

Adapter on WebSphere Application Server V5 . 81

Configuring the V6 Application Servers for IMS

Java Remote Database Services 81

Mapping Hostnames for the Client and Server 82

Installing the Data Source on WebSphere

Application Server V6 for z/OS 82

Installing the EAR file on WebSphere

Application Server V6 for z/OS 83

Installing the IMS Distributed JDBC Resource

Adapter on WebSphere Application Server V6 . 83

Running the IMS Java IVP for Remote Database

Services 84

Running the IMS Java IVP for Remote Database

Services on WebSphere Application Server V5 . . 84

Setting the WebSphere Application Server V5

for z/OS Classpath 85

Installing the Data Source for the IVP on the

Client Side 85

Installing the IVP on the Client Side 86

Testing the IVP on WebSphere Application

Server V5 87

Running the IMS Java IVP for Remote Database

Services on WebSphere Application Server V6 . . 88

iv IMS Java Guide and Reference

|
||

|
|
||

|
|
||
|
||

 |
 |
 | |

 |
 | |
 |
 | |
 | |
 |
 | |
 |
 | |
 | |
 | |
 |
 | |
 |
 | |

 | |

 |
 | |

Setting the WebSphere Application Server V6

for z/OS Classpath 88

Installing the Data Source for the IVP on the

Client Side 88

Installing the IVP on the Client Side 89

Testing the IVP on WebSphere Application

Server V6 90

Running the IMS Java Sample Applications for

Remote Database Services 91

Running the IMS Java Sample Applications on

WebSphere Application Server V5 92

Setting the WebSphere Application Server V5

for z/OS Classpath 92

Installing the Data Source for the IMS Java

Samples on the Client Side 92

Installing the IMS Java Sample Applications

on the Client Side 93

Testing the Phonebook Sample on WebSphere

Application Server V5 95

Testing the Dealership Sample on WebSphere

Application Server V5 95

Running the IMS Java Sample Applications on

WebSphere Application Server V6 96

Setting the WebSphere Application Server V6

for z/OS Classpath 96

Installing the Data Source for the IMS Java

Samples on the Client Side 96

Installing the IMS Java Sample Applications

on the Client Side 98

Testing the Phonebook Sample on WebSphere

Application Server V6 99

Testing the Dealership Sample on WebSphere

Application Server V6 99

Running Your Application on WebSphere

Application Server 100

Running Your Application on WebSphere

Application Server V5 100

Setting the WebSphere Application Server V5

for z/OS Classpath 100

Installing the Data Source on the Client Side 101

Installing the Application on the Client Side 102

Enabling J2EE Tracing with WebSphere

Application Server V5 103

Running Your Application on WebSphere

Application Server V6 104

Setting the WebSphere Application Server V6

for z/OS Classpath 105

Installing the Data Source on the Client Side 105

Installing the Application on the Client Side 106

Enabling J2EE Tracing with WebSphere

Application Server V6 107

WebSphere Application Server EJBs 108

Transaction Semantics and Server-Side EJB

Types 109

Client-Side EJB Security Semantics 109

Chapter 5. DB2 UDB for z/OS Stored

Procedures 111

Configuring DB2 UDB for z/OS for IMS Java . . . 111

Running the IMS Java IVP from DB2 UDB for

z/OS 113

Running the IMS Java Sample Application on DB2

UDB for z/OS 115

Running Your Stored Procedure from DB2 UDB for

z/OS 117

Developing DB2 UDB for z/OS Stored Procedures

that Access IMS DB 119

Chapter 6. CICS Applications 121

Configuring CICS for IMS Java 121

Running the IMS Java IVP on CICS 122

Running the IMS Java Sample Application on CICS 124

Running Your Applications on CICS 125

Developing CICS Applications that Access IMS DB 125

Chapter 7. JDBC Access to IMS Data 127

Comparison of Hierarchical and Relational

Databases 127

Supported SQL Keywords 130

SELECT Statement Usage 131

Selecting Multiple Segments 133

Selecting All Fields in a Segment 133

Segment-Qualified Fields 134

Retrieving XML Using the SELECT Statement 134

Summary of SELECT Statement Usage . . . 134

INSERT Statement Usage 135

DELETE Statement Usage 135

UPDATE Statement Usage 136

FROM Clause Usage 136

PCB-Qualified SQL Queries 136

Summary of FROM Clause Usage 136

WHERE Clause Usage 137

Non-DBD-Defined Fields in the WHERE

Clause 138

Summary of WHERE Clause Usage 138

Supported SQL Aggregate Functions 138

SQL Extensions for XML Storage and Retrieval . . 139

retrieveXML UDF 140

storeXML UDF 141

Supported JDBC Interfaces 142

JDBC Prepared Statements for SQL 144

Supported JDBC Data Types 144

General Mappings from COBOL Copybook Types

to IMS Java and Java Data Types 146

JDBC Recommendations for IMS Databases . . . 147

Java Metadata Classes for IMS Databases 148

Sample Application that Uses JDBC 150

Imported Packages for JDBC Access to IMS

Databases 151

Connections to IMS Databases 151

Chapter 8. XML Storage in IMS

Databases 153

Decomposed Storage Mode for XML 154

Intact Storage Mode for XML 156

Side Segments for Secondary Indexing 157

DBDs for Intact XML Storage 157

XML Schema 159

XML Type Representation 159

JDBC Interface for Storing and Retrieving XML 160

Contents v

|
||

|
||

|
||

|
||
|
||

|
||
|
||
|
||

|
||

 |
 | |

Chapter 9. Problem Determination . . 161

Exceptions 161

How Exceptions Map to DL/I Status Codes . . 161

SQLException Objects 162

XML Tracing for IMS Java 162

WebSphere Application Server Security

Requirements for XML Tracing 163

Enabling XML Tracing 163

Tracing the IMS Java Library Methods . . . 164

Tracing Your Application 164

Debugging an Unresettable JVM in a JMP or JBP

Region 165

Appendix A. Preparing to Run the

Dealership Samples 167

Modifying IMS Stage 1 Input Statements 167

Loading the Dealership Sample Databases 167

Appendix B. SQL Keywords 171

Appendix C. IMS Java Hierarchical

Database Interface 173

Application Programming Using the

DLIConnection Object 173

Creating a DLIConnection Object 173

Creating an SSAList Object 174

Accessing IMS Data Using SSAs 174

Notices 175

Trademarks 177

Bibliography 179

IMS Version 9 Library 179

Supplementary Publications 180

Publication Collections 180

Accessibility Titles Cited in This Library 180

Index 181

vi IMS Java Guide and Reference

|
||

Figures

 1. JMP or JBP Application That is Using IMS Java 10

 2. IVP Screen for IMS Java JMP 12

 3. Subclass IMSFieldMessage: Input Message

Sample Code 18

 4. Subclass IMSFieldMessage: Output Message

Sample Code 19

 5. main Method Sample Code 20

 6. Defining a SPA Message 23

 7. Reading a SPA Message 23

 8. Writing a SPA Message 23

 9. Sample Output Message with Repeating

Structures 25

10. Defining the Primary Input Message 26

11. Defining Separate Input Messages for Each

Request 27

12. Message-Reading Logic 28

13. WebSphere Application Server for z/OS EJB

Using IMS Java 37

14. IMS Java and WebSphere Application Server

Components 75

15. DB2 UDB for z/OS Stored Procedure Using

IMS Java 111

16. CICS Application Using IMS Java 121

17. Sample Dealership Database 128

18. Relational Representation of the Dealership

Database 129

19. Segment Occurrences in the Dealership

Database 130

20. Relational Representation of Segment

Occurrences in the Dealership Database . . . 130

21. Example of SELECT Statement Query Results 132

22. Sample Relational Database Query 133

23. Sample Hierarchical Database Query 133

24. Simple Way to Select All Fields in a Segment 134

25. Long Way to Select All Fields in a Segment 134

26. Sample INSERT Statement 135

27. Sample DELETE Statement 135

28. Sample UPDATE Statement 136

29. PCB-Qualified SQL Query Example 136

30. Creating XML Using the retrieveXML UDF

and the getClob Method 140

31. Establishing a Connection to the Dealership

Database 142

32. Sample PSB for the Sample Dealership

Application 148

33. DBD for the Sample Dealership Database 148

34. Sample DLIModel IMS Java Report for the

Dealership Sample Database 149

35. Example JDBC Application 151

36. Overview of XML Storage in IMS 154

37. How XML is Decomposed XML and Stored in

IMS Segments 155

38. Intact Storage of XML with a Secondary

Index 157

39. DBD for Intact XML Storage and No

Secondary Indexes 158

40. DBD for Intact XML Storage and Two

Secondary Indexes 158

41. Secondary Index DBD for Intact XML Storage 158

42. IMSException Class Example 162

43. Setting a Trace within a Static Method 164

44. Creating an SSAList Object 174

© Copyright IBM Corp. 2000, 2006 vii

 | |

 |
 | |
 |
 | |

viii IMS Java Guide and Reference

Tables

 1. Licensed Program Full Names and Short

Names xi

 2. Relationship between the Transaction Context

and the Transaction Semantics 109

 3. Supported SQL Aggregate Functions and

Their Supported Data Types 139

 4. Supported JDBC Data Types 144

 5. ResultSet.getxxx Methods to Retrieve JDBC

Types 145

 6. Mapping from COBOL Formats to

DLITypeInfo Constants and Java Data Types . 146

 7. DLITypeInfo Constants and Java Data Types

Based on the PICTURE Clause 146

 8. Copybook Formats Mapped to DLITypeInfo

Constants 147

 9. Primary Intact Field Format 156

10. Overflow XML Data Field Format 156

11. IMS Java-Supported XML Schema Data Types 160

© Copyright IBM Corp. 2000, 2006 ix

x IMS Java Guide and Reference

About This Book

This information is available as part of the Information Management Software for

z/OS® Solutions Information Center. To view the information within the

Information Management Software for z/OS Solutions Information Center, go to

publib.boulder.ibm.com/infocenter/imzic. This information is also available in PDF

and BookManager formats. To get the most current versions of the PDF and

BookManager® formats, go to the IMS Library page at http://www.ibm.com/
software/data/ims/library.html.

This book provides application development and deployment information for

IMS™ Java™, a function of IMS that allows you to write Java application programs

that access IMS databases from multiple systems. This book also explains XML

support for IMS databases.

Information about IMS Java is also available from the IMS Web site. Go to

www.ibm.com/ims and link to the IMS Java page.

Prerequisite Knowledge

To configure your system for IMS Java, you must understand system

administration for your system (IMS, WebSphere® Application Server, CICS®, or

DB2® UDB for z/OS). For IMS system administration, you should know the

concepts in IMS Version 9: Administration Guide: System.

To create IMS Java metadata classes, which is a required step in writing IMS Java

applications, you must understand IMS databases. IMS database concepts are

described in IMS Version 9: Administration Guide: Database Manager.

To write Java applications, you must thoroughly understand the Java language and

JDBC. This book assumes that you know Java and JDBC. It does not explain any

Java or JDBC concepts.

To write applications that store or retrieve XML, you must understand XML and its

related technologies, such as XML schemas.

IBM Product Names Used in This Information

In this information, the licensed programs shown in Table 1 are referred to by their

short names.

 Table 1. Licensed Program Full Names and Short Names

Licensed program full name Licensed program short name

IBM® Application Recovery Tool for IMS and

DB2

Application Recovery Tool

IBM CICS Transaction Server for OS/390® CICS

IBM CICS Transaction Server for z/OS CICS

IBM DB2 Universal Database™ DB2 Universal Database

IBM DB2 Universal Database for z/OS DB2 UDB for z/OS

© Copyright IBM Corp. 2000, 2006 xi

Table 1. Licensed Program Full Names and Short Names (continued)

Licensed program full name Licensed program short name

IBM Enterprise COBOL for z/OS and

OS/390

Enterprise COBOL

IBM Enterprise PL/I for z/OS and OS/390 Enterprise PL/I

IBM High Level Assembler for MVS™ & VM

& VSE

High Level Assembler

IBM IMS Advanced ACB Generator IMS Advanced ACB Generator

IBM IMS Batch Backout Manager IMS Batch Backout Manager

IBM IMS Batch Terminal Simulator IMS Batch Terminal Simulator

IBM IMS Buffer Pool Analyzer IMS Buffer Pool Analyzer

IBM IMS Command Control Facility for

z/OS

IMS Command Control Facility

IBM IMS Connect for z/OS IMS Connect

IBM IMS Connector for Java IMS Connector for Java

IBM IMS Database Control Suite IMS Database Control Suite

IBM IMS Database Recovery Facility for

z/OS

IMS Database Recovery Facility

IBM IMS Database Repair Facility IMS Database Repair Facility

IBM IMS DataPropagator™ for z/OS IMS DataPropagator

IBM IMS DEDB Fast Recovery IMS DEDB Fast Recovery

IBM IMS Extended Terminal Option Support IMS ETO Support

IBM IMS Fast Path Basic Tools IMS Fast Path Basic Tools

IBM IMS Fast Path Online Tools IMS Fast Path Online Tools

IBM IMS Hardware Data

Compression-Extended

IMS Hardware Data Compression-Extended

IBM IMS High Availability Large Database

(HALDB) Conversion Aid for z/OS

IBM IMS HALDB Conversion Aid

IBM IMS High Performance Change

Accumulation Utility for z/OS

IMS High Performance Change

Accumulation Utility

IBM IMS High Performance Load for z/OS IMS HP Load

IBM IMS High Performance Pointer Checker

for OS/390

IMS HP Pointer Checker

IBM IMS High Performance Prefix Resolution

for z/OS

IMS HP Prefix Resolution

IBM z/OS Language Environment Language Environment

IBM Tivoli® NetView® for z/OS Tivoli NetView for z/OS

IBM WebSphere Application Server for z/OS

and OS/390

WebSphere Application Server for z/OS

IBM WebSphere MQ for z/OS WebSphere MQ

IBM WebSphere Studio Application

Developer Integration Edition

WebSphere Studio

IBM z/OS z/OS

IBM z/OS C/C++ C/C++

xii IMS Java Guide and Reference

How to Read Syntax Diagrams

The following rules apply to the syntax diagrams that are used in this information:

v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line. The following conventions are used:

– The >>--- symbol indicates the beginning of a syntax diagram.

– The ---> symbol indicates that the syntax diagram is continued on the next

line.

– The >--- symbol indicates that a syntax diagram is continued from the

previous line.

– The --->< symbol indicates the end of a syntax diagram.
v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item

optional_item
 ��

If an optional item appears above the main path, that item has no effect on the

execution of the syntax element and is used only for readability.

��
 optional_item

required_item

��

v If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main

path.

�� required_item required_choice1

required_choice2
 ��

If choosing one of the items is optional, the entire stack appears below the main

path.

�� required_item

optional_choice1

optional_choice2

 ��

If one of the items is the default, it appears above the main path, and the

remaining choices are shown below.

��

required_item
 default_choice

optional_choice

optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be

repeated.

About This Book xiii

��

required_item

�

repeatable_item

��

If the repeat arrow contains a comma, you must separate repeated items with a

comma.

��

required_item

�

 ,

repeatable_item

��

A repeat arrow above a stack indicates that you can repeat the items in the

stack.

v Sometimes a diagram must be split into fragments. The syntax fragment is

shown separately from the main syntax diagram, but the contents of the

fragment should be read as if they are on the main path of the diagram.

�� required_item fragment-name ��

fragment-name:

 required_item

optional_item

v In IMS, a b symbol indicates one blank position.

v Keywords, and their minimum abbreviations if applicable, appear in uppercase.

They must be spelled exactly as shown. Variables appear in all lowercase italic

letters (for example, column-name). They represent user-supplied names or

values.

v Separate keywords and parameters by at least one space if no intervening

punctuation is shown in the diagram.

v Enter punctuation marks, parentheses, arithmetic operators, and other symbols,

exactly as shown in the diagram.

v Footnotes are shown by a number in parentheses, for example (1).

How to Send Your Comments

Your feedback is important in helping us provide the most accurate and highest

quality information. If you have any comments about this or any other IMS

information, you can take one of the following actions:

v Click the Feedback link located at the bottom of every page in the Information

Management Software for z/OS Solutions Information Center. The information

center can be found at http://publib.boulder.ibm.com/infocenter/imzic.

v Go to the IMS Library page at www.ibm.com/software/data/ims/library.html

and click the Library Feedback link, where you can enter and submit comments.

v Send your comments by e-mail to imspubs@us.ibm.com. Be sure to include the

title, the part number of the title, the version of IMS, and, if applicable, the

specific location of the text on which you are commenting (for example, a page

number in the PDF or a heading in the Information Center).

xiv IMS Java Guide and Reference

Summary of Changes

Changes to the Current Edition of This Book for IMS Version 9

This edition, which is available in softcopy format only, includes technical and

editorial changes.

Changes to This Book for IMS Version 9

This version contains new information about the following enhancements to IMS

Version 9:

v Support for XML storage and retrieval from IMS databases: Chapter 8, “XML

Storage in IMS Databases,” on page 153

v Access to IMS databases from WebSphere Application Server on non-z/OS

platforms: Chapter 4, “Remote Data Access with WebSphere Application Server

Applications,” on page 75

v Symbolic checkpoint and restart for JBP applications: “Symbolic Checkpoint and

Restart” on page 28

v Improved IVPs for IMS Java:

– “Running the IMS Java IVP in a JMP Region” on page 10

– “Running the IMS Java IVP in a JBP Region” on page 12

– “Running the IMS Java IVP on WebSphere Application Server for z/OS” on

page 44

– “Running the IMS Java IVP from DB2 UDB for z/OS” on page 113

– “Running the IMS Java IVP on CICS” on page 122
v PQ93785: GSAM database support for JBP regions: “Symbolic Checkpoint and

Restart” on page 28

v PQ97361: SQL search support for non-DBD-defined fields: “Non-DBD-Defined

Fields in the WHERE Clause” on page 138

v PK01881: “Deferred Program Switching for Conversational JMP Applications” on

page 35

This version also contains the following new information:

v “Installing IMS Java” on page 2

v “Downloading Apache Open Source XML Libraries” on page 3

v “Where to Find More Information about IMS Java” on page 6

v “Configuring DB2 UDB for z/OS for IMS Java” on page 111

v “Configuring CICS for IMS Java” on page 121

v “Running the IMS Java Sample Application from a JMP Region” on page 14

v “Running the IMS Java Sample Application on DB2 UDB for z/OS” on page 115

v “Running the IMS Java Sample Application on CICS” on page 124

v “Developing Enterprise Applications that Access IMS DB” on page 69

v “XML Tracing for IMS Java” on page 162

v “Debugging an Unresettable JVM in a JMP or JBP Region” on page 165

This edition also contains the following new and corrected information:

© Copyright IBM Corp. 2000, 2006 xv

v “Adding the Required XML Files to the WebSphere Application Server V5 for

z/OS Classpath” on page 39

v “Adding the XML Files to the IVP Classpath on WebSphere Application Server

V5 for z/OS” on page 47

v “Adding the XML Files to the Application Classpath on WebSphere Application

Server V5 for z/OS” on page 62

v “Adding the XML Files to the EAR Classpath” on page 80

v “Specifying at Runtime the Application Server and the Package to Trace” on

page 68

v “Deployment Descriptor Requirements for IMS Java” on page 72

v “Program Switching in JMP and JBP Applications” on page 35

v “Enabling XML Tracing” on page 163

v “Running the IMS Java IVP from DB2 UDB for z/OS” on page 113

Information about the DLIModel utility has moved:

v The chapter ″DLIModel Utility″ has moved to the IMS Version 9: Utilities

Reference: System.

v Information about the DLIModel utility messages, codes, and abends has moved

to IMS Version 9: Messages and Codes, Volume 1.

The following information has been deleted:

v WebSphere Application Server V4.0.1 for z/OS configuration information. IMS

Version 9 requires that you use WebSphere Application Server V5 for z/OS. See

Chapter 3, “WebSphere Application Server for z/OS Applications,” on page 37.

v Manually creating IMS Java metadata classes. You should always use the

DLIModel utility to generate metadata classes. See the IMS Version 9: Utilities

Reference: System.

v IMSTrace facility. This facility has been deprecated. Use the XMLTrace facility

instead. See “XML Tracing for IMS Java” on page 162.

This version also contains major organizational changes:

v The parts have been removed.

v The overview information for each environment has been moved to the chapter

for each environment.

v The configuration and installation verification tasks for all environments have

been split into their own sections.

v Application development information for JMP and JBP applications have been

split into their own sections.

v Chapter 7, “JDBC Access to IMS Data,” on page 127 has been reorganized to

improve retrievability of reference information.

v Sample JCL jobs have been added throughout the book to provide an alternative

to directly using UNIX® System Services.

To get the latest information about IMS Java, including enhancements to the

product and corrections to the information, go to http://www.ibm.com/ims and

link to the IMS Java page.

xvi IMS Java Guide and Reference

Library Changes for IMS Version 9

Changes to the IMS Library for IMS Version 9 include the addition of one title, a

change of one title, organizational changes, and a major terminology change.

Changes are indicated by a vertical bar (|) to the left of the changed text.

The IMS Version 9 information is now available in the Information Management

Software for z/OS Solutions Information Center, which is available at

http://publib.boulder.ibm.com/infocenter/imzic. The Information Management

Software for z/OS Solutions Information Center provides a graphical user interface

for centralized access to the product information for IMS, IMS Tools, DB2

Universal Database (UDB) for z/OS, DB2 Tools, and DB2 Query Management

Facility (QMF™).

New and Revised Titles

The following list details the major changes to the IMS Version 9 library:

v IMS Version 9: IMS Connect Guide and Reference

The library includes new information: IMS Version 9: IMS Connect Guide and

Reference. This information is available in softcopy format only, as part of the

Information Management Software for z/OS Solutions Information Center, and

in PDF and BookManager formats.

IMS Version 9 provides an integrated IMS Connect function, which offers a

functional replacement for the IMS Connect tool (program number 5655-K52). In

this information, the term IMS Connect refers to the integrated IMS Connect

function that is part of IMS Version 9, unless otherwise indicated.

v The information formerly titled IMS Version 8: IMS Java User’s Guide is now

titled IMS Version 9: IMS Java Guide and Reference. This information is available in

softcopy format only, as part of the Information Management Software for z/OS

Solutions Information Center, and in PDF and BookManager formats.

v To complement the IMS Version 9 library, a retail book, An Introduction to IMS by

Dean H. Meltz, Rick Long, Mark Harrington, Robert Hain, and Geoff Nicholls

(ISBN # 0-13-185671-5), is available from IBM Press. Go to the IMS Web site at

www.ibm.com/ims for details.

Organizational Changes

Organization changes to the IMS Version 9 library include changes to:

v IMS Version 9: Customization Guide

v IMS Version 9: IMS Java Guide and Reference

v IMS Version 9: Messages and Codes, Volume 1

v IMS Version 9: Utilities Reference: System

A new appendix has been added to the IMS Version 9: Customization Guide that

describes the contents of the ADFSSMPL (also known as SDFSSMPL) data set.

The chapter titled ″DLIModel Utility″ has moved from IMS Version 9: IMS Java

Guide and Reference to IMS Version 9: Utilities Reference: System.

The DLIModel utility messages that were in IMS Version 9: IMS Java Guide and

Reference have moved to IMS Version 9: Messages and Codes, Volume 1.

Terminology Changes

IMS Version 9 introduces new terminology for IMS commands:

Summary of Changes xvii

|
|

type-1 command

A command, generally preceded by a leading slash character, that can be

entered from any valid IMS command source. In IMS Version 8, these

commands were called classic commands.

type-2 command

A command that is entered only through the OM API. Type-2 commands

are more flexible than type-2 commands and can have a broader scope. In

IMS Version 8, these commands were called IMSplex commands or

enhanced commands.

Accessibility features for IMS

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in IMS. These features

support:

v Keyboard-only operation.

v Interfaces that are commonly used by screen readers.

Note: The Information Management Software for z/OS Solutions Information

Center, which is available at http://publib.boulder.ibm.com/infocenter/
imzic, and its related publications are accessibility-enabled. You can operate

all features using the keyboard instead of the mouse.

Keyboard navigation

You can access the information center and IMS ISPF panel functions by using a

keyboard or keyboard shortcut keys.

You can find information about navigating the information center using a keyboard

in the information center home at publib.boulder.ibm.com/infocenter/imzic.

For information about navigating the IMS ISPF panels using TSO/E or ISPF, refer

to the z/OS V1R1.0 TSO/E Primer, the z/OS V1R5.0 TSO/E User’s Guide, and the

z/OS V1R5.0 ISPF User’s Guide, Volume 1. These guides describe how to navigate

each interface, including the use of keyboard shortcuts or function keys (PF keys).

Each guide includes the default settings for the PF keys and explains how to

modify their functions.

IBM and accessibility

See the IBM Human Ability and Accessibility Center at www.ibm.com/able for more

information about the commitment that IBM has to accessibility.

xviii IMS Java Guide and Reference

|

|
|

|
|
|

|

|

|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|

Chapter 1. Getting Started with IMS Java

IMS Java is a function of IMS that allows you to write Java application programs

that access IMS databases from many different locations:

v IMS JMP (Java message processing) and JBP (Java batch processing) dependent

regions

v IBM WebSphere Application Server for z/OS

v WebSphere Application Server that is running on a non-z/OS platform

v IBM CICS Transaction Server for z/OS

v IBM DB2 Universal Database for z/OS stored procedures

IMS Java implements the JDBC API, which is the standard Java interface for

database access. JDBC uses SQL (structured query language) calls. The IMS Java

implementation of JDBC supports a selected subset of the full facilities of the JDBC

2.1 API.

IMS Java also extends the JDBC interface for storage and retrieval of XML

documents in IMS. For more information, see Chapter 8, “XML Storage in IMS

Databases,” on page 153.

In addition to JDBC, IMS Java has another interface to the IMS databases called the

IMS Java hierarchical database interface. This interface is similar to the standard IMS

DL/I database call interface, and provides lower-level access to IMS database

functions than the JDBC interface. However, JDBC is the recommended access

interface to IMS databases and this book focuses on JDBC. For information about

the IMS Java hierarchical database interface, see Appendix C, “IMS Java

Hierarchical Database Interface,” on page 173.

The following topics provide additional information:

v “IMS Java System Requirements”

v “Installing IMS Java” on page 2

v “Downloading Apache Open Source XML Libraries” on page 3

v “Administering IMS Java” on page 4

v “IMS Java Class Library Summary” on page 5

v “General Restrictions for Applications” on page 6

v “Where to Find More Information about IMS Java” on page 6

IMS Java System Requirements

To use IMS Java to write application programs that access IMS databases, the

following software and z/OS components are required:

v IMS Version 9 with the IMS Java FMID

v IBM SDK for z/OS Java 2 Technology Edition, Version 1.3.1 or later

v z/OS Version 1 Release 4 or later

v UNIX System Services available at runtime

v Hierarchic File System (HFS) on z/OS. For information about preparing an HFS,

see z/OS: UNIX System Services File System Interface Reference.

© Copyright IBM Corp. 2000, 2006 1

v Xalan-Java version 2.6.0 or later or equivalent code function. See “Downloading

Apache Open Source XML Libraries” on page 3.

Installing IMS Java

IMS Java is delivered in a separate FMID. Before you can install the IMS Java

FMID with SMP/E, you must prepare HFS, which is described in this topic.

Prerequisite: Install IMS Version 9 and run the standard IMS IVPs. For details

about how to run the IMS IVPs, see IMS Version 9: Installation

Volume 1: Installation Verification.

To install IMS Java:

1. Allocate a data set for HFS:

//HFSALLOC JOB parameters

//**/

//* To run this job: */

//* 1) Add JOB statement parameters to meet your requirements. */

//* 2) For DSNAME, change hfsdsn to the name of the new file */

//* system. */

//* 3) For VOLUME, change volid to the volser ID of the DASD */

//* that will contain the IMS Java HFS data set. */

//**/

//ALLOCATE EXEC PGM=IDCAMS,DYNAMNBR=200

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 ALLOCATE -

 DSNAME(’hfsdsn’) -

 RECFM(U) -

 LRECL(0) -

 BLKSIZE(32760) -

 DSORG(PO) -

 VOLUME(volid) -

 DSNTYPE(HFS) -

 NEW CATALOG -

 SPACE(15,5) CYL -

 DIR(200) -

 UNIT(SYSALLDA)

/*

2. Define the mount point directory to mount the HFS:

//HFSMOUNT JOB parameters

//**/

//* To run this job: */

//* 1) Add JOB statement parameters to meet your requirements. */

//* 2) For FILESYSTEM, change hfsdsn to the name of the file */

//* system that you specified in the HFSALLOC job. */

//* 3) For MOUNTPOINT, change /PathPrefix to the high-level */

//* directory name. The directory name must be preceded with*/

//* a forward slash (/), for example, /apps or /ims/apps. */

//* This string must match the PathPrefix */

//* string in the DFSJSMKD job. */

//**/

//MOUNT EXEC PGM=IKJEFT01

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

 MOUNT FILESYSTEM(’hfsdsn’) /* MOUNT HFS */ +

 MOUNTPOINT(’/PathPrefix’) TYPE(HFS) MODE(RDWR)

/*

3. Run the sample installation job DFSJSMKD. DFSJSMKD runs the DFSJMKDR

REXX script, which creates the HFS paths for IMS Java.

4. Using SMP/E, install the IMS Java FMID.

IMS Java System Requirements

2 IMS Java Guide and Reference

|
|

|
|

|
|
|

|
|

Next: The next step varies. If you are using SDK 1.4.1 or earlier, the next step is

“Downloading Apache Open Source XML Libraries.” If you are using SDK

1.4.2 or later, the next step depends on the environment that your

application will run in:

v JMP region: “Running the IMS Java IVP in a JMP Region” on page 10

v JBP region: “Running the IMS Java IVP in a JBP Region” on page 12

v WebSphere Application Server for z/OS: “Configuring WebSphere

Application Server for z/OS for IMS Java” on page 38

v WebSphere Application Server on a non-z/OS platform: “Configuring

WebSphere Application Server for z/OS for IMS Java” on page 38

v DB2 UDB for z/OS stored procedure: “Configuring DB2 UDB for z/OS

for IMS Java” on page 111

v CICS: “Configuring CICS for IMS Java” on page 121

Downloading Apache Open Source XML Libraries

IMS Java and the DLIModel utility require Xalan-Java version 2.6.0 or later, or

equivalent code function.

XSLT 4.3.1, which is equivalent to Xalan-Java version 2.6.1, is included in SDK

1.4.2. If you are using SDK 1.4.2 or later, do not download and install the Apache

XML files.

If you are using SDK 1.4.1 or lower, you must install Xalan-Java version 2.6.0 or

later from the Apache Software Foundation (www.apache.org) XML Project

(xml.apache.org), or equivalent code function. The Apache XML Project is a

collaborative software development project that licenses open source software at no

charge.

The following open source files (or equivalent code function) are required by IMS

Java and the DLIModel utility:

xercesImpl.jar

XML parser that is required for IMS Java and the DLIModel utility

xalan.jar

XSLT processor that is required for IMS Java to create XML and transform

XML documents

xml-apis.jar

XML APIs that are required for IMS Java and the DLIModel utility

Prerequisite: “Installing IMS Java” on page 2

To download the required open source files for IMS Java and the DLIModel utility

from xml.apache.org:

1. Go to http://xml.apache.org.

2. Follow the links to the Xalan-Java 2 page.

3. Follow the links to download the zipped binary file for Xalan-Java version 2.6.0

or later.

4. Decompress the zipped Xalan-Java file.

5. Move the following files to the HFS directory pathprefix/usr/lpp/ims/
imsjava91/lib:

v xercesImpl.jar

Installing IMS Java

Chapter 1. Getting Started with IMS Java 3

|
|
|
|

|

|

|
|

|
|

|
|

|

|
|

|
|

|
|

v xalan.jar

v xml-apis.jar

Next: The next step varies depending on the environment that your application

will run in:

v JMP region: “Running the IMS Java IVP in a JMP Region” on page 10

v JBP region: “Running the IMS Java IVP in a JBP Region” on page 12

v WebSphere Application Server for z/OS: “Configuring WebSphere

Application Server for z/OS for IMS Java” on page 38

v WebSphere Application Server on a non-z/OS platform: “Configuring

WebSphere Application Server for z/OS for IMS Java” on page 38

v DB2 UDB for z/OS stored procedure: “Configuring DB2 UDB for z/OS

for IMS Java” on page 111

v CICS: “Configuring CICS for IMS Java” on page 121

Administering IMS Java

This topic provides the high-level tasks to administer IMS Java: from installing the

IMS Java function to deploying your Java application. This topic does not contain

application programming information.

To administer IMS Java:

 1. Install and configure the required z/OS software for IMS Java. See “IMS Java

System Requirements” on page 1 for a list of required software and z/OS

components that must be installed before you can use IMS Java.

 2. Install IMS Java. See “Installing IMS Java” on page 2.

 3. Download and install the required open source files. See “Downloading

Apache Open Source XML Libraries” on page 3.

 4. If you are using the remote database services of IMS Java, install additional

files from the IMS Java Web site. “Downloading IMS Java Files for Remote

Database Services” on page 77.

 5. Continue configuration for your environment, if necessary:

v WebSphere Application Server for z/OS: “Configuring WebSphere

Application Server for z/OS for IMS Java” on page 38

v WebSphere Application Server on a non-z/OS platform: “Configuring

WebSphere Application Server for z/OS for IMS Java” on page 38 and

“Configuring the Application Servers for IMS Java Remote Database

Services” on page 77

v DB2 UDB for z/OS stored procedure: “Configuring DB2 UDB for z/OS for

IMS Java” on page 111

v CICS: “Configuring CICS for IMS Java” on page 121
 6. Run the IVP for your environment:

v JMP region: “Running the IMS Java IVP in a JMP Region” on page 10

v JBP region: “Running the IMS Java IVP in a JBP Region” on page 12

v WebSphere Application Server for z/OS: “Running the IMS Java IVP on

WebSphere Application Server for z/OS” on page 44

v WebSphere Application Server on a non-z/OS platform: “Running the IMS

Java IVP on WebSphere Application Server for z/OS” on page 44 and

“Running the IMS Java IVP for Remote Database Services” on page 84

Downloading Open Source Libraries

4 IMS Java Guide and Reference

|
|

|

|

|
|

|
|

|
|

|

|
|
|

|

|
|

|
|
|
|

|
|

|

v DB2 UDB for z/OS stored procedure: “Running the IMS Java IVP from DB2

UDB for z/OS” on page 113

v CICS: “Running the IMS Java IVP on CICS” on page 122
 7. Write the PSB, and generate the DBDs, PSB, and ACB for the application.

 8. Using the DBDs and PSB as input, write control statements for the DLIModel

utility. See the IMS Version 9: Utilities Reference: System.

 9. Run the DLIModel utility, which uses the DBDs, PSB, and other input to

generate the Java metadata class that the application uses to access the

databases. The DLIModel utility is a Java application, so you can run it from

the UNIX System Services prompt, or you can run it using the z/OS-provided

BPXBATCH utility. See the IMS Version 9: Utilities Reference: System.

10. Compile the Java source file of the Java metadata class that is generated to

create a Java class file.

11. Provide the Java metadata classes, the DLIModel IMS Java Report, which

provides the information about the IMS database, and optionally the

generated XML schema to the Java application developer.

12. Update the IMS system definition with a new APPLCTN macro statement for

the Java application.

13. Deploy your application:

v JMP region: Using the IMS Java IVP and sample application as models, start

a JMP region with your specific requirements. See IMS Version 9: Installation

Volume 2: System Definition and Tailoring for all of the available options.

v JBP region: Using the IMS Java IVP as a model, start a JBP region with your

specific requirements. See IMS Version 9: Installation Volume 2: System

Definition and Tailoring for all of the available options.

v WebSphere Application Server for z/OS: “Running Your Applications on

WebSphere Application Server for z/OS” on page 59

v WebSphere Application Server on a non-z/OS platform: “Running Your

Application on WebSphere Application Server” on page 100

v DB2 UDB for z/OS stored procedure: “Running Your Stored Procedure

from DB2 UDB for z/OS” on page 117

v CICS: “Running Your Applications on CICS” on page 125

IMS Java Class Library Summary

Your Java application uses the IMS Java class library, which includes the following

packages:

com.ibm.ims.base

Provides classes for basic IMS Java functions and for problem

determination.

com.ibm.connector2.ims.db

Provides classes for connecting to IMS databases from WebSphere

Application Server for z/OS.

com.ibm.ims.application

Provides classes for processing IMS messages, and performs commits and

rollbacks for JMP and JBP applications.

com.ibm.ims.db

Provides classes for the JDBC driver and for the IMS Java hierarchical

database interface.

Administering IMS Java

Chapter 1. Getting Started with IMS Java 5

|
|
|

com.ibm.ims.rds

Provides classes for client-side WebSphere Application Server support of

remote database services.

com.ibm.ims.rds.host

Provides classes for server-side WebSphere Application Server support of

remote database services.

com.ibm.ims.rds.util

Provides classes for storing data that is passed between the client and

server components for remote data access support.

com.ibm.ims.xms

Provides classes for storing and retrieving XML in Java applications.

Related Reading: For more information about the IMS Java class library, see the

IMS Java API Specification. Go to the IMS Web site at www.ibm.com/ims and link

to the IMS Java page.

General Restrictions for Applications

The following restrictions apply to applications that use IMS Java:

v The z/OS JVM restricts the classpath length to 255 characters. Do not create

classpaths longer than 255 characters. This restriction does not apply to

classpaths in WebSphere Application Server for z/OS.

v IMS Java applications cannot run in an IMS batch environment.

v For IMS Version 8 and later, IMS Java does not support High Performance Java

(HPJ).

v IMS does not support local transactions, but IMS Java emulates local transaction

semantics, depending on the type of EJB deployed, with remote database

services support. Therefore, the commit, rollback, and setAutoCommit methods

on an IMS Java JDBC Connection object are not supported and throw an

SQLException object.

Where to Find More Information about IMS Java

The information in this book is only one of the resources available for IMS Java

information.

The IMS Java Web site contains current information about IMS Java and links to

the resources described in this section. The Web site also has links to presentation

materials from recent conferences, downloads, and announcements about IMS Java

enhancements. Go to the IMS Web site at www.ibm.com/ims and link to the IMS

Java page.

The IMS Java API specification is available on the IMS Java Web site. The

specification contains information about the packages described in “IMS Java Class

Library Summary” on page 5.

The IMS Support Web site contains a broad range of information about IMS,

including IMS Java. Go to http://www.ibm.com/software/data/ims/support.html.

The following Redbooks™ contain information about IMS Java and related

technologies:

IMS Java Class Library

6 IMS Java Guide and Reference

|
|

|
|

|

|
|
|

|
|

v IMS Version 7 Java Update (SG24-6536): Contains IMS Version 7 level information

about running applications from JMP regions, JBP regions, DB2 stored

procedures, and CICS.

v IMS e-business Connectors: A Guide to IMS Connectivity (SG24-6514): Contains a

chapter on setting up open database access (ODBA).

v ABCs of System Programming Volume 9 (SG24-6989): Describes UNIX System

Services (z/OS UNIX) and how to install, tailor, configure, and use the z/OS

Version 1 Release 4 version of z/OS UNIX.

More information about IMS Java

Chapter 1. Getting Started with IMS Java 7

More information about IMS Java

8 IMS Java Guide and Reference

Chapter 2. JMP and JBP Applications

Two IMS dependent regions provide a Java Virtual Machine (JVM) environment for

Java applications:

Java message processing (JMP) regions

JMP regions are similar to MPP regions, but JMP regions allow the

scheduling only of Java message-processing applications. A JMP

application is started when there is a message in the queue for the JMP

application and IMS schedules the message to be processed. JMP

applications are executed through transaction codes submitted by users at

terminals and from other applications. Each transaction code represents a

transaction that the JMP application processes. A single application can

also be started from multiple transaction codes.

 JMP applications are very flexible in how they process transactions and

where they send the output. JMP applications send any output messages

back to the message queues and process the next message with the same

transaction code. The program continues to run until there are no more

messages with the same transaction code. JMP applications share the

following characteristics:

v They are small.

v They can produce output that is needed immediately.

v They can access IMS or DB2 data in a DB/DC environment and DB2

data in a DCCTL environment.

Java batch processing (JBP) regions

JBP regions run flexible programs that perform batch-type processing

online and can access the IMS message queues for output (similar to

non-message-driven BMP applications). JBP applications are started by

submitting a job with JCL or from TSO. JBP applications are like BMP

applications, except that they cannot read input messages from the IMS

message queue. For example, there is no IN= parameter in the startup

procedure. Similarly to BMP applications, JBP applications can use

symbolic checkpoint and restart calls to restart the application after an

abend. JBP applications can access IMS or DB2 UDB for z/OS data in a

DB/DC or DBCTL environment and DB2 UDB for z/OS data in a DCCTL

environment

Important: JMP and JBP regions are not necessary if your application runs in

WebSphere Application Server, DB2 UDB for z/OS, or CICS. JMP or

JBP regions are needed only if your application is going to run in an

IMS dependent region.

Figure 1 on page 10 shows a Java application that is running in a JMP or JBP

region. JDBC or IMS Java hierarchical interface calls are passed to the IMS Java

layer, which converts the calls to DL/I calls.

© Copyright IBM Corp. 2000, 2006 9

JMP and JBP regions can run applications written in Java, object-oriented COBOL,

or a combination of the two. See “Enterprise COBOL Interoperability with JMP and

JBP Applications” on page 31.

JMP and JBP applications can access DB2 UDB for z/OS databases in addition to

IMS databases. See “Configuring JMP and JBP Regions for DB2 UDB for z/OS

Database Access” on page 16.

This chapter uses the sample applications that are shipped with IMS Java to show

how to write and deploy IMS Java applications that run in JMP and JBP regions.

The following topics provide additional information:

v “Running the IMS Java IVP in a JMP Region”

v “Running the IMS Java IVP in a JBP Region” on page 12

v “Running the IMS Java Sample Application from a JMP Region” on page 14

v “Configuring JMP and JBP Regions for DB2 UDB for z/OS Database Access” on

page 16

v “Developing JMP Applications” on page 17

v “Developing JBP Applications” on page 28

v “Enterprise COBOL Interoperability with JMP and JBP Applications” on page 31

v “Accessing DB2 UDB for z/OS Databases from JMP or JBP Applications” on

page 34

v “Program Switching in JMP and JBP Applications” on page 35

Running the IMS Java IVP in a JMP Region

To verify that IMS Java is properly installed and that the JMP region is properly

configured, run the IMS Java IVP. Details about the PROCLIB members and

procedure parameters are in IMS Version 9: Installation Volume 2: System Definition

and Tailoring.

Prerequisites:

v Ensure that the standard IMS IVPs have been run. These IVPs

prepare the DBD for the IVP database, named DFSIVD2, and load

the IVP database. They also prepare the IMS Java application PSB

(named DFSIVP37), build ACBs, prepare the MFS format (named

DFSIVF37), and prepare other IMS control blocks required by the

IMS Java IVPs. For details about how to run the IMS IVPs, see

IMS Version 9: Installation Volume 1: Installation Verification.

Figure 1. JMP or JBP Application That is Using IMS Java

Running the IMS Java IVP in a JMP Region

10 IMS Java Guide and Reference

|

v “Installing IMS Java” on page 2

To run the IMS Java IVP in a JMP region:

1. Edit the sample JVM member DFSJVMMS, which is in IMS.SDFSISRC:

a. For -Dibm.jvm.trusted.middleware.class.path=, change “ImsjavaPath” to

pathprefix/usr/lpp/ims/imsjava91

b. For -Dibm.jvm.shareable.application.class.path=, change “SamplePath” to

pathprefix/usr/lpp/ims/imsjava91

c. If you are using SDK 1.4.1, add the following JVM property:

-Djava.endorsed.dirs=pathprefix/usr/lpp/ims/imsjava91/lib

The IVP tests that the required XML files are installed and in the classpath.

If you do not do this task, you will receive an error when you run the IVP.
2. Edit the sample JVM member DFSJVMEV, which is in IMS.SDFSISRC:

a. Change “JavaHome” to the SDK directory. For example: usr/lpp/java/j1.3

b. Change “imsjavaPath” to pathprefix/usr/lpp/ims/imsjava91
3. Create two HFS files: one for the JMP output and one for errors. The following

sample job creates the files JVM.out and JVM.err:

//name JOB parameters

//TCHMOD PROC TPARM=

//BPX EXEC PGM=BPXBATCH,PARM=’&TPARM’

//SYSPRINT DD SYSOUT=*

//STDOUT DD PATH=’path/tchmod.out’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

//STDERR DD PATH=’path/tchmod.err’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

// PEND

//STEP1 EXEC TCHMOD,TPARM=’sh touch path/JVM.out’

//*

//STEP2 EXEC TCHMOD,

// TPARM=’sh chmod 777 path/JVM.out’

//*

//STEP3 EXEC TCHMOD,TPARM=’sh touch path/JVM.err’

//*

//STEP4 EXEC TCHMOD,TPARM=’sh chmod 777 path/JVM.err’

4. Edit the DFSJMP procedure, which is in IMS.PROCLIB:

a. Set the JAVAOUT and JAVAERR DD statements to point to the JVM.out and

JVM.err files. For example:

//JAVAOUT DD PATH=’/path/JVM.out’

//JAVAERR DD PATH=’/path/JVM.err’

b. Set the STEPLIB DD statement to point to the SDFSJLIB data set. This data

set contains the DFSCLIB member.

c. Set the PROCLIB DD statement to point to the SDFSISRC data set. This data

set contains the DFSJVMMS, DFSJVMWK, DFSJVMEV, and DFSJVMAP

members.

d. Set the following parameters:

v JVMOPMAS= data set member DFSJVMMS (master JVM options)

v JVMOPWKR= data set member DFSJVMWK (worker JVM options)

v ENVIRON= data set member DFSJVMEV (LIBPATH options)

v XPLINK=Y if you use SDK 1.4.1
e. Set any other parameters that are required by your installation. For

complete information about the available parameters and DD statements for

the DFSJMP procedure, see the IMS Version 9: Installation Volume 2: System

Definition and Tailoring.

Running the IMS Java IVP in a JMP Region

Chapter 2. JMP and JBP Applications 11

|

|
|

|
|

|
|

|
|

|

|

|

|
|

|
|

|
|

|
|
|

|

|
|
|
|

5. Run the JMP procedure.

The JMP region is started.

6. From an IMS terminal, invoke the formatted screen for the transaction by

issuing the following command:

/format IVTCM

An input screen, as shown in Figure 2, is displayed.

7. In the PROCESS CODE field, type: RUNIVP

If the IVP was successful, it displays IVP PASSED.

If the IVP was not successful, it displays IVP FAILED or IVP INCOMPLETE.

See the JVM.out file for the results of the individual tests that are performed by

the IVP.

8. Optionally, move the JVM.out and JVM.err files from HFS to a partitioned data

set member by submitting the following job:

//name JOB

//MV2PSD EXEC PGM=IKJEFT01

//SYSPRINT DD SYSOUT=*

//SYSTSPRT DD SYSOUT=*

//O1 DD DISP=SHR,DSN=hlq.dataset(JVMOUT)

//I1 DD PATH=’pathPrefix/JVM.out’

//O2 DD DISP=SHR,DSN=hlq.dataset(JVMERR)

//I2 DD PATH=’pathPrefix/JVM.err’

//SYSTSIN DD *

OCOPY INDD(I1) OUTDD(O1)

OCOPY INDD(I2) OUTDD(O2)

OCOPY INDD(I3) OUTDD(O3)

/*

You can also use this application as a phonebook sample. From the input screen,

you can enter the process codes that are listed on the right side of the screen.

Running the IMS Java IVP in a JBP Region

To verify that IMS Java is properly installed and that the JBP region is properly

configured, run the IMS Java IVP. Details about the PROCLIB members and

procedure parameters are in IMS Version 9: Installation Volume 2: System Definition

and Tailoring.

 **

 * IMS INSTALLATION VERIFICATION PROCEDURE *

 **

 TRANSACTION TYPE : CONVERSATIONAL

 DATE : 12/11/04

 PROCESS CODE (*1) :

 (*1) PROCESS CODE

 LAST NAME : RUNIVP

 ADD

 FIRST NAME : DELETE

 UPDATE

 EXTENSION NUMBER : DISPLAY

 END

 INTERNAL ZIP CODE :

 SEGMENT# :

Figure 2. IVP Screen for IMS Java JMP

Running the IMS Java IVP in a JMP Region

12 IMS Java Guide and Reference

|
|

|
|

Prerequisites:

v Ensure that the standard IMS IVPs have been run. These IVPs

prepare the DBD for the IVP database, named DFSIVD2, and load

the IVP database. They also prepare the IMS Java application PSB

(named DFSIVP67) and prepare other IMS control blocks required

by the IMS Java IVPs. For details about how to run the IMS IVPs,

see IMS Version 9: Installation Volume 1: Installation Verification.

v “Installing IMS Java” on page 2

To run the IMS Java IVP in a JBP region:

1. Edit the sample JVM member DFSJVMMS, which is in IMS.SDFSISRC:

a. For -Dibm.jvm.trusted.middleware.class.path=, change “ImsjavaPath” to

pathprefix/usr/lpp/ims/imsjava91

b. For -Dibm.jvm.shareable.application.class.path=, change “SamplePath” to

pathprefix/usr/lpp/ims/imsjava91

c. If you are using SDK 1.4.1, add the following JVM property:

-Djava.endorsed.dirs=pathprefix/usr/lpp/ims/imsjava91/lib

The IVP tests that the required XML files are installed and in the classpath.

If you do not do this task, you will receive an error when you run the IVP.
2. Edit the sample JVM member DFSJVMEV, which is in IMS.SDFSISRC:

a. Change “JavaHome” to the SDK directory. For example:

/usr/lpp/java/j1.3

b. Change “imsjavaPath” to pathprefix/usr/lpp/ims/imsjava91
3. Create two HFS files: one for the JBP output and one for errors. The following

sample job creates the files JVM.out and JVM.err:

//name JOB parameters

//TCHMOD PROC TPARM=

//BPX EXEC PGM=BPXBATCH,PARM=’&TPARM’

//SYSPRINT DD SYSOUT=*

//STDOUT DD PATH=’path/tchmod.out’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

//STDERR DD PATH=’path/tchmod.err’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

// PEND

//STEP1 EXEC TCHMOD,TPARM=’sh touch path/JVM.out’

//*

//STEP2 EXEC TCHMOD,

// TPARM=’sh chmod 777 path/JVM.out’

//*

//STEP3 EXEC TCHMOD,TPARM=’sh touch path/JVM.err’

//*

//STEP4 EXEC TCHMOD,TPARM=’sh chmod 777 path/JVM.err’

4. Edit the DFSJBP procedure, which is in IMS.PROCLIB:

a. Set the JAVAOUT and JAVAERR DD statements to point to the JVM.out and

JVM.err files. For example:

//JAVAOUT DD PATH=’/path/JVM.out’

//JAVAERR DD PATH=’/path/JVM.err’

b. Set the STEPLIB DD statement to point to the SDFSJLIB data set. This data

set contains the DFSCLIB member.

c. Set the PROCLIB DD statement to point to the SDFSISRC data set. This data

set contains the DFSJVMMS, DFSJVMWK, DFSJVMEV, and DFSJVMAP

members.

d. Set the following parameters:

v JVMOPMAS= data set member DFSJVMMS (master JVM options)

Running the IMS Java IVP in a JBP Region

Chapter 2. JMP and JBP Applications 13

|

|
|

|
|

|
|

|
|

|

|
|

|

|
|

|
|

|
|

|
|
|

v JVMOPWKR= data set member DFSJVMWK (worker JVM options)

v ENVIRON= data set member DFSJVMEV (LIBPATH options)

v XPLINK=Y if you use SDK 1.4.1
e. Set the following EXEC statement parameters to the following:

PSB=DFSIVP67 and MBR=DFSJBP.

f. Set any other parameters that are required by your installation. For complete

information about the available parameters and DD statements for the

DFSJBP procedure, see the IMS Version 9: Installation Volume 2: System

Definition and Tailoring.
5. Run the JBP procedure.

The JBP region is started, the IVP runs, and output is sent to the JVM.out file.

6. Optionally, move the JVM.out and JVM.err files from HFS to a partitioned data

set member by submitting the following job:

//name JOB

//MV2PSD EXEC PGM=IKJEFT01

//SYSPRINT DD SYSOUT=*

//SYSTSPRT DD SYSOUT=*

//O1 DD DISP=SHR,DSN=hlq.dataset(JVMOUT)

//I1 DD PATH=’pathPrefix/JVM.out’

//O2 DD DISP=SHR,DSN=hlq.dataset(JVMERR)

//I2 DD PATH=’pathPrefix/JVM.err’

//SYSTSIN DD *

OCOPY INDD(I1) OUTDD(O1)

OCOPY INDD(I2) OUTDD(O2)

OCOPY INDD(I3) OUTDD(O3)

/*

7. Check the JVMOUT data set or JVM.out file.

If the IVP was successful, it displays IVP PASSED.

If the IVP was not successful, it displays IVP FAILED or IVP INCOMPLETE.

Running the IMS Java Sample Application from a JMP Region

The IMS Java sample application can run in a JMP region. The sample application

processes the sample dealership database based on six process codes. This sample

is not MFS-formatted. Therefore, you must run this sample by submitting the

transaction code, followed by a process code and other input data, from an IMS

terminal.

The source files for the sample application are in the HFS directory

pathprefix/usr/lpp/ims/imsjava91/samples/dealership/ims.

Prerequisites:

v “Running the IMS Java IVP in a JMP Region” on page 10

v Appendix A, “Preparing to Run the Dealership Samples,” on page

167

To run the IMS Java sample application from a JMP region:

1. Edit the sample JVM member DFSJVMAP by adding the following line:

AUTPSB11=samples/dealership/ims/IMSAuto

2. Following the directions provided in the sample JVM members, edit the

following three sample JVM members, which are in IMS.SDFSISRC:

DFSJVMAP, DFSJVMMS, and DFSJVMEV.

3. Create two HFS files: one for the JMP output and one for errors. The following

sample job creates the files JVM.out and JVM.err:

Running the IMS Java IVP in a JBP Region

14 IMS Java Guide and Reference

|

|
|

|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

//name JOB parameters

//TCHMOD PROC TPARM=

//BPX EXEC PGM=BPXBATCH,PARM=’&TPARM’

//SYSPRINT DD SYSOUT=*

//STDOUT DD PATH=’path/tchmod.out’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

//STDERR DD PATH=’path/tchmod.err’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

// PEND

//STEP1 EXEC TCHMOD,TPARM=’sh touch path/JVM.out’

//*

//STEP2 EXEC TCHMOD,

// TPARM=’sh chmod 777 path/JVM.out’

//*

//STEP3 EXEC TCHMOD,TPARM=’sh touch path/JVM.err’

//*

//STEP4 EXEC TCHMOD,TPARM=’sh chmod 777 path/JVM.err’

4. Edit the DFSJMP procedure, which is in IMS.PROCLIB:

a. Set the JAVAOUT and JAVAERR DD statements to point to the files that are

created in step 3 on page 14. For example:

//JAVAOUT DD PATH=’/path/JVM.out’

//JAVAERR DD PATH=’/path/JVM.err’

b. Set the STEPLIB DD statement to point to the SDFSJLIB data set. This data

set contains the DFSCLIB member.

c. Set the PROCLIB DD statement to point to the SDFSISRC data set. This data

set contains the DFSJVMMS, DFSJVMWK, DFSJVMEV, and DFSJVMAP

members.

d. Set the following parameters:

v JVMOPMAS= data set member DFSJVMMS (master JVM options)

v JVMOPWKR= data set member DFSJVMWK (worker JVM options)

v ENVIRON= data set member DFSJVMEV (LIBPATH options)

v XPLINK=Y if you use SDK 1.4.1
e. Set any other parameters that are required by your installation. For

complete information about the available parameters and DD statements for

the DFSJMP procedure, see the IMS Version 9: Installation Volume 2: System

Definition and Tailoring.
5. Run the JMP procedure.

The JMP region is started.

6. From an IMS terminal, run the application by issuing the transaction code

AUTRAN11, one of the following six transaction codes, and input data. The

spacing is important.

v LISTMODELS. For example:

AUTRAN11 LISTMODELS

v FINDCAR. For example:

AUTRAN11 FINDCAR FORD V234567890123456789V

v MODELDETAILS. For example:

AUTRAN11 MODELDETAILS VOLVO S40 2002

v RECORDSALE. For example:

AUTRAN11 RECORDSALE 1235 S999302042002LAST9 >

V987654321123456782VVOLVO S40

v ACCEPTORDER. For example:

AUTRAN11 ACCEPTORDER 123457LAST9 FIRST9 >

 05-18-200111:23:34

Running the Sample Application from a JMP Region

Chapter 2. JMP and JBP Applications 15

|
|

|
|
|

|

|

|

|

|

|

|

|

|
|

|

|
|

v CANCELORDER. For example:

AUTRAN11 CANCELORDER 1234571235

v RETRIEVEXML. For example:

AUTRAN11 RETRIEVEXML 1235

Configuring JMP and JBP Regions for DB2 UDB for z/OS Database

Access

This topic describes how to set up a JMP or JBP region to access DB2 UDB for

z/OS databases. It does not describe how to set up DB2 UDB for z/OS for access

from IMS. For information about setting up DB2 UDB for z/OS for Java

application access, see DB2 Universal Database for OS/390 and z/OS: Application

Programming Guide and Reference for Java. Note that you must create a DB2 plan for

each PSB (usually each Java application) that is used to access DB2 UDB for z/OS.

JMP and JBP applications can access DB2 UDB for z/OS databases. For JMP or JBP

applications to have DB2 UDB for z/OS access, you must attach DB2 UDB for

z/OS to IMS using the DB2 Recoverable Resource Manager Services attachment

facility (RRSAF). Unlike other dependent regions, JMP and JBP regions do not use

the External Subsystem Attach Facility (ESAF).

DB2 UDB for z/OS provides different JDBC drivers:

v JDBC/SQLJ driver for DB2 for OS/390 and z/OS with JDBC 2.0 support (called

the DB2 JDBC/SQLJ 2.0 driver), which allows access to DB2 UDB for z/OS

databases only when IMS is on the same z/OS image as DB2 UDB for z/OS.

This is a type 2 JDBC driver.

v JDBC/SQLJ driver for DB2 for OS/390 and z/OS with JDBC 1.2 support (called

the DB2 JDBC/SQLJ 1.2 driver), which allows access to DB2 UDB for z/OS

databases only when IMS is on the same z/OS image as DB2 UDB for z/OS.

This is a type 2 JDBC driver.

v DB2 Universal JDBC driver, which allows access to DB2 UDB for z/OS

databases from IMSs that are on different z/OS images from DB2 UDB for z/OS

when you use the Universal Driver type 4 connectivity. You can also use the

type 2 implementation of this driver for access to DB2 UDB for z/OS databases

when IMS is on the same z/OS image as DB2 UDB for z/OS.

All of these drivers are referred to in this topic as DB2 JDBC drivers.

For type 2 JDBC drivers, you must use the default connection URL in the

application program. For example, jdbc:db2os390: or db2:default:connection.

For type 4 JDBC drivers, you can use a specific connection URL in the application

program.

With RRSAF, the dependent region builds an attachment thread to DB2 UDB for

z/OS using RRS. RRS coordinates the commits of the updates that the application

program makes to both IMS and DB2 UDB for z/OS resources. IMS is a

participant, not the coordinator, of these updates and commits.

To attach a DB2 UDB for z/OS subsystem to IMS using RRSAF for JMP or JBP

access to DB2 UDB for z/OS databases:

1. Create an IMS.PROCLIB member for information about the DB2 UDB for z/OS

subsystem. The member name must follow the same naming conventions you

follow when you attach DB2 UDB for z/OS with ESAF.

Running the Sample Application from a JMP Region

16 IMS Java Guide and Reference

|

|

|

|

|

|
|
|
|
|
|

|
|

|
|

In the IMS.PROCLIB member, define the following three parameters for the

DB2 subsystem that JMP and JBP applications need access to:

SST=DB2,SSN=db2name,COORD=RRS

You can provide two different definitions for the same DB2 system:

v An ESAF definition for non-Java regions

v An RRSAF definition for Java regions
2. In the trusted middleware class path of the DFSJVMMS member, which is

IMS.SDFSISRC, add the following paths:

v Path to the ZIP file of the DB2 JDBC driver

v Path to the ZIP file and ZIP file name of the DB2 JDBC driver

For example:

-Dibm.jvm.trusted.middleware.class.path=>

/usr/lpp/db2/db2710/classes: >

/usr/lpp/db2/db2710/classes/db2j2classes.zip

3. In the DFSJVMEV member, which is IMS.SDFSISRC, add the path to the SO file

of the DB2 JDBC driver to the LIBPATH= environment variable. For example:

LIBPATH=/usr/lpp/db2/db2710/lib

4. Add the following parameters to the IMS control region EXEC statement:

SSM=name

RRS=Y

5. In the DFSJMP or DFSJBP procedure of the region that has access to DB2 UDB

for z/OS, add the DFSDB2AF DD statement to point to the DB2 UDB for z/OS

libraries, which must be APF-authorized.

Related Reading: For details about the IMS.PROCLIB member and procedure

parameters, see the external subsystem information of IMS Version 9: Installation

Volume 2: System Definition and Tailoring. For information about the DB2 JDBC

drivers, see DB2 Universal Database for OS/390 and z/OS: Application Programming

Guide and Reference for Java.

Developing JMP Applications

JMP applications access the IMS message queue to receive messages to process and

to send output messages. Therefore, you must define input and output message

classes by subclassing the IMSFieldMessage class. The IMS Java class libraries

provide the capability to process IMSFieldMessage objects. JMP applications commit

or roll back the processing of each message by calling

IMSTransaction.getTransaction().commit() or

IMSTransaction.getTransaction().rollback().

Related Reading: For details about the classes you use to develop a JMP

application, see the IMS Java API Specification, which is available on the IMS Java

Web site. Go to http://www.ibm.com/ims and link to the IMS Java page.

The following topics provide additional information:

v “Subclassing the IMSFieldMessage Class to Define Input Messages” on page 18

v “Subclassing the IMSFieldMessage Class to Define Output Messages” on page 18

v “Implementing the main Method” on page 19

v “JMP Programming Models” on page 20

v “Additional Message Handling Considerations for JMP Applications” on page 22

DB2 UDB for z/OS Configuration

Chapter 2. JMP and JBP Applications 17

|

|

|

|

|

|
|

|

|

|
|
|
|
|
|
|

Subclassing the IMSFieldMessage Class to Define Input

Messages

Figure 3 gives an example of subclassing the IMSFieldMessage class. This class

defines an input message that accepts a 2-byte type code of a car model to query a

car dealership database for available car models.

This example code subclasses the IMSFieldMessage class to make the fields in the

message available to the program and creates an array of DLITypeInfo objects for

the fields in the message. For the DLITypeInfo class, the code identifies first the

field name, then the data type, the position, and finally the length of the individual

fields within the array. This allows the application to use the access functions

within the IMSFieldMessage class hierarchy to automatically convert the data from

its format in the message to a Java type that the application can process. In

addition to the message-specific fields it defines, the IMSFieldMessage class

provides access functions that allow it to determine the transaction code and the

length of the message.

Subclassing the IMSFieldMessage Class to Define Output

Messages

Figure 4 on page 19 gives a sample of subclassing IMSFieldMessage to define an

output message that displays the available car models from a type code query.

This sample code creates an array of DLITypeInfo objects and then passes that

array, the byte array length, and the boolean value false, which indicates a

non-SPA message, to the IMSFieldMessage constructor. For each DLITypeInfo object,

you must first identify the field data type, then the field name, the field offset in

the byte array, and finally the length of the byte array.

package dealership.application;

import com.ibm.ims.db.*;

import com.ibm.ims.base.*;

import com.ibm.ims.application.*;

/* Subclasses IMSFieldMessage to define application’s input messages */

public class InputMessage extends IMSFieldMessage {

 /* Creates array of DLITypeInfo objects for the fields in message */

 final static DLITypeInfo[]fieldInfo={

 new DLITypeInfo("ModelTypeCode", DLITypeInfo.CHAR, 1, 2)

 };

 public InputMessage() {

 super(fieldInfo, 2, false);

 }

}

Figure 3. Subclass IMSFieldMessage: Input Message Sample Code

Developing JMP Applications

18 IMS Java Guide and Reference

|
|
|

|

Implementing the main Method

The main method (public static void main(String[] args)) is the entry point

into all JMP and JBP applications.

The sample code shown in Figure 5 on page 20 demonstrates how to perform the

following actions:

1. Query the database for a specific model that matches the input model type

code. This method is not implemented yet and is explained more fully in

Chapter 7, “JDBC Access to IMS Data,” on page 127.

2. Return detailed information about that specific model as output if it is available

at the dealership.

3. Return an error message if the model is not available at the dealership.

package dealership.application;

import com.ibm.ims.db.*;

import com.ibm.ims.base.*;

import com.ibm.ims.application.*;

/*Subclasses IMSFieldMessage to define application’s output messages */

public class ModelOutput extends IMSFieldMessage {

 /* Creates array of DLITypeInfo objects for the fields in message */

 final static DLITypeInfo[] fieldInfo={

 new DLITypeInfo("Type", DLITypeInfo.CHAR, 1, 2),

 new DLITypeInfo("Make", DLITypeInfo.CHAR, 3, 10),

 new DLITypeInfo("Model", DLITypeInfo.CHAR, 13, 10),

 new DLITypeInfo("Year", DLITypeInfo.DOUBLE, 23, 4),

 new DLITypeInfo("CityMiles", DLITypeInfo.CHAR, 27, 4),

 new DLITypeInfo("HighwayMiles", DLITypeInfo.CHAR, 31, 4),

 new DLITypeInfo("Horsepower", DLITypeInfo.CHAR, 35, 4)

 };

 public ModelOutput() {

 super(fieldInfo, 38,false);

 }

}

Figure 4. Subclass IMSFieldMessage: Output Message Sample Code

Developing JMP Applications

Chapter 2. JMP and JBP Applications 19

Note: The IMSMessageQueue.getUniqueMessage method returns true if a message

was read from the queue and false if one was not. Also, the

IMSTransaction.getTransaction().commit method must be called before receiving

subsequent messages from the queue.

JMP Programming Models

JMP applications get input messages from the IMS message queue, access IMS

databases, commit transactions, and can send output messages.

JMP applications are started when IMS receives a message with a transaction code

for the JMP application and schedules the message. JMP applications end when

there are no more messages with that transaction code to process.

JMP Application Without Rollback

A transaction begins when the application gets an input message and ends when

the application commits the transaction. To get an input message, the application

calls the getUniqueMessage method. The application must commit or rollback any

database processing. The application must issue a commit call immediately before

calling subsequent getUniqueMessage methods.

public static void main(String args[]) {

 conn = DriverManager.getConnection(...); //Establish DB connection

 while(MessageQueue.getUniqueMessage(...)){ //Get input message, which

 //starts transaction

package dealership.ims;

import com.ibm.ims.application.*;

public static void main(String args[]) {

 IMSMessageQueue messageQueue = null;

 InputMessage inputMessage = null;

 ModelOutput modelOutput = null;

 messageQueue = new IMSMessageQueue();

 inputMessage = new InputMessage();

 modelOutput = new ModelOutput();

 while(messageQueue.getUniqueMessage(inputMessage)) {

 if (!inputMessage.getString

 ("ModelTypeCode").trim().equals("")){

 if (getModelDetails(inputMessage, modelOutput)) // 1

 messageQueue.insertMessage(modelOutput); // 2

 }

 else {

 reply("Invalid Input"); // 3

 }

 IMSTransaction.getTransaction().commit();

 }

 public void reply(String errmsg) throws IMSException{

 ErrorMessage errorMessage = new ErrorMessage();

 errorMessage.setString("MessageText",errmsg);

 messageQueue.insertMessage(errorMessage);

 }

}

Figure 5. main Method Sample Code

Developing JMP Applications

20 IMS Java Guide and Reference

|
|
|
|
|

results=statement.executeQuery(...); //Perform DB processing

 ...

 MessageQueue.insertMessage(...); //Send output messages

 ...

 IMSTransaction.getTransaction().commit(); //Commit and end transaction

 }

 conn.close(); //Close DB connection

 return;

}

JMP Application that Uses Rollback

A JMP application can roll back database processing and output messages any

number of times during a transaction. A rollback call backs out all database

processing and output messages to the most recent commit. The transaction must

end with a commit call when the program issues a rollback call, even if no further

database or message processing occurs after the rollback call.

public static void main(String args[]) {

 conn = DriverManager.getConnection(...); //Establish DB connection

 while(MessageQueue.getUniqueMessage(...)){ //Get input message, which

 //starts transaction

 results=statement.executeQuery(...); //Perform DB processing

 ...

 MessageQueue.insertMessage(...); //Send output messages

 ...

 IMSTransaction.getTransaction().rollback(); //Roll back DB processing

 //and output messages

 results=statement.executeQuery(...); //Perform more DB processing

 //(optional)

 ...

 MessageQueue.insertMessage(...); //Send more output messages

 //(optional)

 ...

 IMSTransaction.getTransaction().commit(); //Commit and end transaction

 }

 conn.close(); //Close DB connection

 return;

}

JMP Application that Accesses IMS or DB2 UDB for z/OS Data

When a JMP application accesses only IMS data, it needs to open a database

connection only once to process multiple transactions, as shown in “JMP

Application Without Rollback” on page 20. However, a JMP application that

accesses DB2 UDB for z/OS data must open and close a database connection for

each message that is processed. The following model is valid for DB2 UDB for

z/OS database access, IMS database access, or both DB2 UDB for z/OS and IMS

database access.

Related Reading: For more information about accessing DB2 data from a JMP

application, see “Accessing DB2 UDB for z/OS Databases from JMP or JBP

Applications” on page 34.

public static void main(String args[]) {

 while(MessageQueue.getUniqueMessage(...)){ //Get input message, which

 //starts transaction

 conn = DriverManager.getConnection(...); //Establish DB connection

Developing JMP Applications

Chapter 2. JMP and JBP Applications 21

|
|
|
|
|
|
|

results=statement.executeQuery(...); //Perform DB processing

 ...

 MessageQueue.insertMessage(...); //Send output messages

 ...

 conn.close(); //Close DB connection

 IMSTransaction.getTransaction().commit(); //Commit & end transaction

 }

 return;

}

Additional Message Handling Considerations for JMP

Applications

JMP applications access the IMS message queue in addition to IMS or DB2 UDB

for z/OS databases. This topic provides information about specific programming

considerations for the IMS message queue.

In this topic:

v “Conversational Transactions”

v “Handling Multi-Segment Messages” on page 24

v “Coding and Accessing Messages with Repeating Structures” on page 25

v “Flexible Reading of Multiple Input Messages” on page 26

Conversational Transactions

A conversational program runs in a JMP region and processes conversational

transactions that are made up of several steps. It does not process the entire

transaction at the same time. A conversational program divides processing into a

connected series of terminal-to-program-to-terminal interactions. Use

conversational processing when one transaction contains several parts.

A nonconversational program receives a message from a terminal, processes the

request, and sends a message back to the terminal. A conversational program

receives a message from a terminal and replies to the terminal, but it saves the

data from the transaction in a scratch pad area (SPA). Then, when the person at the

terminal enters more data, the program has the data it saved from the last message

in the SPA, so it can continue processing the request without the person at the

terminal having to enter the data again. The application package classes enable

applications to be built using IMS Java.

Related Reading: For more information about conversational and

nonconversational transaction processing, see IMS Version 9: Administration Guide:

Transaction Manager.

Defining a SPA Message in a Conversational Program: To define a SPA message

in a conversational program:

1. Define the SPA message (including the boolean as a SPA parameter). By default,

all messages going to (input) and from (output) a Java application are

transmitted as EBCDIC character data. To use a different type of encoding, you

must call the IMSFieldMessage class inherited method setDefaultEncoding and

provide the new encoding type. This encoding can be any Java-supported

encoding type. In Figure 6 on page 23, the default encoding is specified as

UTF-8.

Developing JMP Applications

22 IMS Java Guide and Reference

|
|
|

2. Read the SPA message before reading the application messages:

3. Write the SPA message before sending any output messages:

4. End the conversation by using the version of the insertMessage method that

contains a boolean isLast argument set to true:

msgQ.insertMessage(spaMessage, true);

public class SPAMessage extends IMSFieldMessage {

 static DLITypeInfo[] fieldInfo = {

 new DLITypeInfo("SessionNumber",DLITypeInfo.SMALLINT,1, 2),

 new DLITypeInfo("ProcessCode", DLITypeInfo.CHAR, 3, 8),

 new DLITypeInfo("LastName", DLITypeInfo.CHAR, 11,10),

 new DLITypeInfo("FirstName", DLITypeInfo.CHAR, 21,10),

 new DLITypeInfo("Extension", DLITypeInfo.CHAR, 31,10),

 new DLITypeInfo("ZipCode", DLITypeInfo.CHAR, 41, 7),

 new DLITypeInfo("Reserved", DLITypeInfo.CHAR, 48,19) };

public SPAMessage() {

 super(fieldInfo, 66, true);

 setDefaultEncoding("UTF-8");

}

}

Figure 6. Defining a SPA Message

try {

 // Get the SPA data

 msgReceived = msgQ.getUniqueMessage(spaMessage);

 }

 catch (IMSException e)

 {

 if (e.getStatusCode() !=

 JavaToDLI.MESSAGE_QUEUED_PRIOR_TO_LAST_START)

 throw e;

 }

 if (!msgReceived)

 outputMessage.setString("Message","UNABLE TO READ SPA");

 else if (!msgQ.getNextMessage(inputMessage))

 // No input message received

 outputMessage.setString("Message","NO INPUT MESSAGE");

 else if ((spaMessage.getShort("SessionNumber")==0)

 && (!inputMessage.getString("ProcessCode").trim().equals("END"))

 && (inputMessage.getString("LastName").trim().equals("")))

 // New Conversation. User has to specify last name.

 outputMessage.setString("Message","LAST NAME WAS NOT SPECIFIED");

 else {

 {

Figure 7. Reading a SPA Message

 // Set spa data fields

 spaMessage.setString("ProcessCode",

 inputMessage.getString("ProcessCode"));

 spaMessage.setString("LastName",

 inputMessage.getString("LastName"));

 spaMessage.setString("FirstName",

 inputMessage.getString("FirstName"));

 spaMessage.setString("Extension",

 inputMessage.getString("Extension"));

 spaMessage.setString("ZipCode",

 inputMessage.getString("ZipCode"));

 spaMessage.incrementSessionNumber();

 msgQ.insertMessage(spaMessage);

Figure 8. Writing a SPA Message

Developing JMP Applications

Chapter 2. JMP and JBP Applications 23

Conversational Transaction Sequence of Events: When the message is a

conversational transaction, the following sequence of events occurs:

1. IMS removes the transaction code and places it at the beginning of a message

segment. The message segment is equal in length to the SPA that was defined

for this transaction during system definition. This is the first segment of the

input message that is made available to the program. The second through the

nth segments from the terminal, minus the transaction code, become the

remainder of the message that is presented to the application program.

2. After the conversational program prepares its reply, it inserts the SPA to IMS.

The program then inserts the actual text of the reply as segments of an output

message.

3. IMS saves the SPA and routes the message to the input LTERM (logical

terminal).

4. If the SPA insert specifies that another program is to continue the same

conversation, the total reply (including the SPA) is retained on the message

queue as input to the next program. This program then receives the message in

a similar form.

5. A conversational program must be scheduled for each input exchange. The

other processing continues while the operator at the input terminal examines

the reply and prepares new input messages.

6. To terminate a conversation, the program places blanks in the transaction code

field of the SPA and inserts the SPA to IMS. In IMS Java this happens when

you call IMSMessageQueue.insertMessage with the boolean parameter isLast set

to true.

7. The conversation can also be terminated if the transaction code in the SPA is

replaced by any nonconversational program’s transaction code, and the SPA is

inserted to IMS. After the next terminal input, IMS routes that message to the

other program’s queue in the normal way.

Handling Multi-Segment Messages

Message-driven applications can have multi-segment input messages. That is, more

than one message needs to be read from the message queue in order to retrieve the

entire message. When this occurs, you must provide a mapping for each message

that is to be read from the queue and use the appropriate methods available from

the IMSMessageQueue class.

The following code defines two input messages that comprise a multi-segment

message:

public class InputMessage1 extends IMSFieldMessage {

 final static DLITypeInfo[] segmentInfo = {

 new DLITypeInfo("Field1", DLITypeInfo.CHAR, 1, 10),

 new DLITypeInfo("Field2", DLITypeInfo.INTEGER, 11, 4)

 };

 public InputMessage1() {

 super(segmentInfo, 14, false);

 }

}

public class InputMessage2 extends IMSFieldMessage {

 final static DLITypeInfo[] segmentInfo = {

 new DLITypeInfo("Field1", DLITypeInfo.CHAR, 1, 10),

 new DLITypeInfo("Field2", DLITypeInfo.CHAR, 11, 8)

 };

Developing JMP Applications

24 IMS Java Guide and Reference

public InputMessage2() {

 super(segmentInfo, 18, false);

 }

}

The following code shows how the message queue is used to retrieve both

messages:

//Create a message queue

IMSMessageQueue messageQueue = new IMSMessageQueue();

//Create the first input message

InputMessage1 input1 = new InputMessage1();

//Create the second input message

InputMessage2 input2 = new InputMessage2();

try {

 //Read the first message from the queue

 messageQueue.getUniqueMessage(input1);

 ...

 //Read the second message from the queue

 messageQueue.getNextMessage(input2);

 ...

} catch (IMSException e) {

 ...

}

Coding and Accessing Messages with Repeating Structures

Messages with repeating structures can be defined by using the DLITypeInfoList

class. With the DLITypeInfoList class, you can specify a repeating list of fields and

the maximum number of times the list can be repeated. These repeating structures

can contain repeating structures.

Figure 9 is a sample output message that contains a set of Make, Model, and Color

fields, with a count field to identify how many occurrences were stored:

To access the nested structures that are defined in a DLITypeInfoList object, use a

dotted notation to specify the fields and the index of the field within a repeating

structure. This dotted notation can use either the field names or field indexes. For

example, the “Color” field in the fourth “Models” definition in the ModelOutput

object is accessed as “Models.4.Color” within the ModelOutput message. The

following code sets the fourth “Color” in the ModelOutput message to “Red.”

ModelOutput output= new ModelOutput();

output.setString("Models.4.Color", "Red");

The following code uses field indexes instead of field names to make the same

change to the ModelOutput message:

public class ModelOutput extends IMSFieldMessage {

static DLITypeInfo[] modelTypeInfo = {

 new DLITypeInfo("Make", DLITypeInfo.CHAR, 1, 20),

 new DLITypeInfo("Model", DLITypeInfo.CHAR, 21, 20),

 new DLITypeInfo("Color", DLITypeInfo.CHAR, 41, 20),

 };

static DLITypeInfo[] modelTypeInfoList = {

 new DLITypeInfo("ModelCount", DLITypeInfo.INTEGER, 1, 4),

 new DLITypeInfoList("Models", modelTypeInfo, 5, 60, 100),

 };

public ModelOutput() {

 super(modelOutputTypeInfo, 6004, false);

} }

Figure 9. Sample Output Message with Repeating Structures

Developing JMP Applications

Chapter 2. JMP and JBP Applications 25

|
|
|
|

ModelOutput output= new ModelOutput();

output.setString("2.4.3", "Red");

Flexible Reading of Multiple Input Messages

There are times when an application needs to process multiple input messages that

require different input data types. For example, the car dealership sample

application supports requests to list models, show model details, find cars, cancel

orders, and record sales. Each of these requests requires different input data. The

following steps explain how to define the messages to support these requests, and

how to access the messages from the application.

1. Define the primary input message. The primary input message is the message

that you pass to the IMSMessageQueue.getUniqueMessage method to retrieve all

of your input messages. Your primary input message must have an I/O area

that is large enough to contain any of the input requests that your application

might receive. It must also contain at least one field in common with all of

your input messages. This common field allows you to determine the input

request. In the example in Figure 10, the common field is CommandCode, and the

maximum length of each message is 64 (the number passed to the

IMSFieldMessage constructor):

2. Define separate input messages for each request. Each of these input messages

contains the same CommandCode field as its first field. Each of these input

messages also uses an IMSFieldMessage constructor that takes an

IMSFieldMessage object and a DLITypeInfo array. The IMSFieldMessage

constructor allows you to remap the contents of the primary input message

using the same type of information with each request; therefore, you do not

copy the I/O area of the message, only a reference to this area. Figure 11 on

page 27 illustrates code that creates the input messages for the requests

ShowModelDetails, FindACar, and CancelOrder.

public class InputMessage extends IMSFieldMessage {

 final static DLITypeInfo[] fieldInfo = {

 new DLITypeInfo("CommandCode", DLITypeInfo.CHAR, 1, 20), �A�};

 public InputMessage(DLITypeInfo[] fieldInfo)

 {

 super(fieldInfo, 64, false); �B�

 }

}

Figure 10. Defining the Primary Input Message

Developing JMP Applications

26 IMS Java Guide and Reference

Note the following details about Figure 10 on page 26 and Figure 11:

v The CommandCode field is defined within every class at lines �A�, �C�, �E�, and

�G�. This field must be defined in every message that reads the command code.

If you do not define the field, you must adjust the offsets of the following fields

to account for the existence of the CommandCode in the byte array. For

example, you can delete the DLITypeInfo entry for CommandCode in the

CancelOrderInput class, but the OrderNumber field must still start at offset 21.

v The length of the base class InputMessage must be large enough to contain any

of its subclasses. In this example, the InputMessage class is 65 bytes because the

fields of the FindACarInput method require it �B�.

v Each InputMessage subclass must provide a constructor to create itself from an

InputMessage object, as in lines �D�, �F�, and �H�. This constructor uses a new

constructor in the IMSFieldMessage class, called a copy constructor.

public class ShowModelDetailsInput extends IMSFieldMessage {

 final static DLITypeInfo[] fieldInfo = {

 new DLITypeInfo("CommandCode", DLITypeInfo.CHAR, 1, 20), �C�

 new DLITypeInfo("ModelTypeCode", DLITypeInfo.CHAR, 21, 2),

 };

public ShowModelDetailsInput(InputMessage inputMessage) { �D�

 super(inputMessage, fieldInfo);

}

}

public class FindACarInput extends IMSFieldMessage {

 final static DLITypeInfo[] fieldInfo = {

 new DLITypeInfo("CommandCode", DLITypeInfo.CHAR, 1, 20), �E�

 new DLITypeInfo("Make", DLITypeInfo.CHAR, 21, 10),

 new DLITypeInfo("Model", DLITypeInfo.CHAR, 31, 10),

 new DLITypeInfo("Year", DLITypeInfo.CHAR, 41, 4),

 new DLITypeInfo("LowPrice", DLITypeInfo.PACKEDDECIMAL, 45, 5),

 new DLITypeInfo("HighPrice", DLITypeInfo.PACKEDDECIMAL, 50, 5),

 new DLITypeInfo("Color", DLITypeInfo.CHAR, 55, 10),

 };

public FindACarInput(InputMessage inputMessage) { �F�

 super(inputMessage, fieldInfo);

}

}

public class CancelOrderInput extends IMSFieldMessage {

 final static DLITypeInfo[] fieldInfo = {

 new DLITypeInfo("CommandCode", DLITypeInfo.CHAR, 1, 20), �G�

 new DLITypeInfo("OrderNumber", DLITypeInfo.CHAR, 21, 6),

 new DLITypeInfo("DealerNumber", DLITypeInfo.CHAR, 21, 6),

 };

public CancelOrderInput(InputMessage inputMessage) �H�

{

 super(inputMessage, fieldInfo);

}

Figure 11. Defining Separate Input Messages for Each Request

Developing JMP Applications

Chapter 2. JMP and JBP Applications 27

Given this design, an application can provide message-reading logic similar to that

shown in Figure 12.

Developing JBP Applications

JBP applications do not access the IMS message queue, and therefore you do not

need to subclass the IMSFieldMessage class.

Related Reading: For details about the classes you use to develop a JBP

application, see the IMS Java API Specification, which is available on the IMS Java

Web site. Go to http://www.ibm.com/ims and link to the IMS Java page.

The following topics provide additional information:

v “Symbolic Checkpoint and Restart”

v “JBP Programming Models” on page 29

Symbolic Checkpoint and Restart

Similarly to BMP applications, JBP applications can use symbolic checkpoint and

restart calls to restart the application after an abend. The primary methods for

symbolic checkpoint and restart are:

v IMSTransaction().checkpoint()

v IMSTransaction().restart()

These methods perform functions that are analogous to the DL/I system service

calls: (symbolic) CHKP and XRST.

A JBP application connects to a database, makes a restart call, performs database

processing, periodically checkpoints, and disconnects from the database at the end

of the program. The program must issue a final commit before ending. On an

initial application start, the IMSTransaction().restart() method notifies IMS that

symbolic checkpoint and restart is to be enabled for the application. The

application then issues periodic IMSTransaction().checkpoint() calls to take

checkpoints. The IMSTransaction().checkpoint() method allows the application to

provide a com.ibm.ims.application.SaveArea object that contains one or more

other application Java objects whose state is to be saved with the checkpoint.

If a restart is required, it is initiated in a similar way to BMP applications: the

checkpoint ID is provided either with the IMSTransaction().restart() call

(similarly to providing the ID to the XRST call in IMS), or with in the CKPTID=

while (getUniqueMessage(inputMessage)) {

 string commandCode=inputMsg.getString("CommandCode").trim();

 if (commandCode.equals("ShowModelDetails")) {

 showModelDetails(new ShowModelDetailsInput(inputMessage));

 } else if(commandCode.equals("FindACar")) {

 findACar(new FindACarInput(inputMessage));

 } else {

 //process an error

 }

}

Figure 12. Message-Reading Logic

Developing JMP Applications

28 IMS Java Guide and Reference

|
|

|

|
|
|

|

|

|
|

|
|
|
|
|
|
|
|
|

|
|
|

parameter of the JBP region JCL. The restart() method returns a SaveArea object

that contains the application objects in the same order in which they were

originally checkpointed.

Related Reading: For the programming model for symbolic checkpoint and restart,

see “JBP Application with Symbolic Checkpoint and Restart.”

JBP Programming Models

JBP applications are similar to JMP applications, except that JBP applications do

not receive input messages from the IMS message queue. The program should

periodically issue commit calls, except for applications that have the PSB

PROCOPT=GO parameter.

Unlike BMP applications, JBP applications must be non-message-driven

applications.

JBP Application without Rollback

A JBP application connects to a database, performs database processing,

periodically commits, and disconnects from the database at the end of the

program. The program must issue a final commit before ending.

public static void main(String args[]) {

 conn = DriverManager.getConnection(...); //Establish DB connection

 repeat {

 repeat {

 results=statement.executeQuery(...); //Perform DB processing

 ...

 MessageQueue.insertMessage(...); //Send output messages

 ...

 }

 IMSTransaction.getTransaction().commit(); //Periodic commits divide work

 }

 conn.close(); //Close DB connection

 return;

}

JBP Application with Symbolic Checkpoint and Restart

A JBP application connects to a database, makes a restart call, performs database

processing, periodically checkpoints, and disconnects from the database at the end

of the program. The program must issue a final commit before ending.

public static void main(String args[]) {

 conn = DriverManager.getConnection(...); //Establish DB connection

 IMSTransaction.getTransaction().retart(); //Restart application

 //after abend from last

 //checkpoint

 repeat {

 repeat {

 results=statement.executeQuery(...); //Perform DB processing

 ...

 MessageQueue.insertMessage(...); //Send output messages

 ...

 }

 IMSTransaction.getTransaction().checkpoint(); //Periodic checkpoints

Developing JBP Applications

Chapter 2. JMP and JBP Applications 29

|
|
|

|
|

// divide work

 }

 conn.close(); //Close DB connection

 return;

}

JBP Application using Rollback

Similarly to JMP applications, JBP applications can also roll back database

processing and output messages. A final commit call is required before the

application can end, even if no further database processing occurs or output

messages are sent after the last rollback call.

public static void main(String args[]) {

 conn = DriverManager.getConnection(...); //Establish DB connection

 repeat {

 repeat {

 results=statement.executeQuery(...); //Perform DB processing

 ...

 MessageQueue.insertMessage(...); //Send output messages

 ...

 IMSTransaction.getTransaction().rollback(); //Roll out DB

 //processing and output

 //messages

 results=statement.executeQuery(...); //Perform more DB

 //processing (optional)

 ...

 MessageQueue.insertMessage(...); //Send more output

 //messages (optional)

 ...

 }

 IMSTransaction.getTransaction().commit(); //Periodic commits divide work

 }

 conn.close(); //Close DB connection

 return;

}

JBP Application that Accesses DB2 UDB for z/OS or IMS Data

Like a JBP application that accesses IMS data, a JBP application that accesses DB2

UDB for z/OS data connects to a database, performs database processing,

periodically commits, and disconnects from the database at the end of the

application. However, the application must also issue a final commit after closing

the database connection.

The following model is valid for DB2 UDB for z/OS database access, IMS database

access, or both DB2 UDB for z/OS and IMS database access.

Related Reading: For more information about accessing DB2 UDB for z/OS data

from a JBP application, see “Configuring JMP and JBP Regions for DB2 UDB for

z/OS Database Access” on page 16.

public void doBegin() ... { //Application logic runs

 //doBegin method

 conn = DriverManager.getConnection(...); //Establish DB connection

 repeat {

 repeat {

 results=statement.executeQuery(...); //Perform DB processing

 ...

Developing JBP Applications

30 IMS Java Guide and Reference

MessageQueue.insertMessage(...); //Send output messages

 ...

 }

 IMSTransaction.getTransaction().commit(); //Periodic commits divide work

 }

 conn.close(); //Close DB connection

 IMSTransaction.getTransaction().commit(); //Commit the DB connection close

 return;

}

Enterprise COBOL Interoperability with JMP and JBP Applications

IMS Enterprise COBOL for z/OS and OS/390 Version 3 Release 2 supports

interoperation between COBOL and Java languages when running in a JMP or JBP

region. With this support, you can:

v Call an object-oriented (OO) COBOL application from an IMS Java application

by building the front-end application, which processes messages, in Java, and

the back end, which processes databases, in OO COBOL.

v Build an OO COBOL application containing a main routine that can invoke Java

routines.

Restriction: COBOL applications that run in an IMS Java dependent region must

use the AIB interface, which requires that all PCBs in a PSB definition

have a name.

You can access COBOL code in a JMP or JBP region because Enterprise COBOL

provides object-oriented language syntax that enables you to:

v Define classes with methods and data implemented in COBOL

v Create instances of Java and COBOL classes

v Invoke methods on Java and COBOL objects

v Write classes that inherit from Java classes or other COBOL classes

v Define and invoke overloaded methods

In Enterprise COBOL programs, you can call the services provided by the JNI to

obtain Java-oriented capabilities in addition to the basic OO capabilities available

directly in the COBOL language.

In Enterprise COBOL classes, you can code CALL statements that interface with

procedural COBOL programs. Therefore, COBOL class definition syntax can be

especially useful for writing wrapper classes for procedural COBOL logic, enabling

existing COBOL code to be accessed from Java.

Java code can create instances of COBOL classes, invoke methods of these classes,

and can extend COBOL classes.

Related Reading: For details building applications that use Enterprise COBOL and

that run in an IMS Java dependent region, see Enterprise COBOL

for z/OS and OS/390: Programming Guide.

The following topics provide additional information:

v “Enterprise COBOL as a Back-End Application in a JMP or JBP Region” on page

32

Developing JBP Applications

Chapter 2. JMP and JBP Applications 31

v “Enterprise COBOL as a Front-End Application in a JMP or JBP Region”

v “Performance Consideration for OO COBOL in a JMP or JBP Region” on page 33

v “Recommendation against Accessing Databases with Both Java and COBOL” on

page 33

Enterprise COBOL as a Back-End Application in a JMP or JBP

Region

When you define an OO COBOL class and compile it with the Enterprise COBOL

compiler, the compiler generates a Java class definition with native methods and

the object code that implements the native methods. After compiling the class, you

can create an instance and invoke the methods of the class from a Java program

that runs in a JMP or JBP region. For example, you can define an OO COBOL class

with the appropriate DL/I call in COBOL to access an IMS database.

When Java is the front-end language, you must perform all message-queue and

message-synchronization processing in Java.

For example, you must call both the IMSMessageQueue.getUniqueMessage method

(to read messages from the queue) and the

IMSTransaction.getTransaction().commit() method (to commit changes) before

reading subsequent messages from the message queue or exiting the application. In

the back-end application, you can access IMS databases by either using Java or

calling a COBOL routine.

You can use the COBOL STOP RUN statement in the COBOL part of an

application that runs in an JMP or JBP region. However, this statement terminates

all COBOL and Java routines, including the JVM, and returns control immediately

to IMS with both the program and transaction left in a stopped state

Important: Do not mix the languages that are used to read messages from the

message queue or to commit resources. The IMS Java library tracks the

calls that are made in Java to ensure that the syncpoint rules are

followed, but it does not track calls made in COBOL.

For example, you can define an OO COBOL class with the appropriate DL/I call in

COBOL to access an IMS database. To make the implementation of this class

available to an IMS Java program:

1. Compile the COBOL class with the Enterprise COBOL compiler to generate a

Java source file, which contains the class definition, and an object module,

which contains the implementation of the native methods.

2. Compile the generated Java source file with the Java compiler to create the

application class file.

3. Link the object module into a dynamic link library (DLL) in the HFS file (.so).

4. Update the application class path (ibm.jvm.application.class.path) for the JMP

or JBP region to allow access to the Java class file.

5. Update the library path for the JMP or JBP region to allow access to the DLL.

Enterprise COBOL as a Front-End Application in a JMP or JBP

Region

The object-oriented syntax of Enterprise COBOL enables you to build COBOL

applications with a main method, which can be run directly in a JMP or JBP region.

The JMP or JBP region locates, instantiates, and invokes this main method in the

same way it does for the main method of a Java application.

COBOL Interoperability

32 IMS Java Guide and Reference

You can write an application for an JMP or JBP region entirely with OO COBOL,

but a more likely use for a front-end COBOL application is to call a Java routine

from a COBOL application.

When running within the JVM of an JMP or JBP region, Enterprise COBOL

run-time support automatically locates and uses this JVM to invoke methods on

Java classes.

A front-end OO COBOL application with a main routine that runs in a JMP or JBP

region has the same requirements as a Java program that runs in a JMP or JBP

region.

The COBOL application must commit resources before reading subsequent

messages or exiting the application. A COBOL GU call does not implicitly commit

resources when the program is running in a JMP or JBP region as it does when the

program is running in an MPP region.

Use Dl/I calls for message processing (GU and GN) and transaction synchronization

(CHKP). A CHKP call in a JMP or JBP region does not automatically retrieve a

message from the message queue.

You can use the COBOL STOP RUN statement in the COBOL part of an application

that runs in a JMP or JBP region. However, this statement terminates all COBOL

and Java routines, including the JVM, and returns control immediately to IMS with

both the program and transaction left in a stopped state.

Performance Consideration for OO COBOL in a JMP or JBP

Region

COBOL code in a JMP or JBP dependent region affects performance. Because

COBOL class methods are implemented in native code, the JVM cannot be reset

after a transaction that uses COBOL routines runs.

IBM’s Persistent Reusable Java Virtual Machine is specifically designed to treat

applications that invoke native code as untrusted. After a transaction runs that

contains COBOL routines, IMS ends the current JVM and creates a fresh JVM

before scheduling the next transaction. Only classes in the trusted middleware class

path ibm.jvm.middleware.class.path can call native routines without affecting JVM

reset.

Related Reading: For more information about the Persistent Reusable Java Virtual

Machine, see IBM Developer Kit for OS/390, Java 2 Technology Edition: New IBM

Technology featuring Persistent Reusable Java Virtual Machines.

Recommendation against Accessing Databases with Both

Java and COBOL

IBM recommends that you do not access the same DB PCB from both Java and

COBOL. The COBOL and Java parts of an application share a single database

pointer (or cursor). If the same DB PCB is accessed by both Java and COBOL,

database positioning as a result of calls in one language affect the database

positioning for calls in the other language.

For example, if you build a SQL SELECT clause and use JDBC to query and

retrieve results, the IMS Java class library constructs the appropriate request to IMS

to establish the correct position in the database. If you then call a COBOL routine,

COBOL Interoperability

Chapter 2. JMP and JBP Applications 33

which builds an SSA and runs a GU request to IMS against the same DB PCB, the

GU request will likely change the position in the database for that DB PCB. If the

position is changed, subsequent JDBC requests using the same SQL SELECT clause

to retrieve more records will be wrong because the database position has changed.

If you must access the same DB PCB from multiple languages, establish database

positioning again when returning from an inter-language call before accessing

more records in the database.

Note: Although IBM advises caution for language interoperability, the behavior

described in this section is not related to the programming languages

themselves. Two parts of the same application that both access the same DB

PCB can have the same behavior described in this section even if both parts

are written in the same language.

Accessing DB2 UDB for z/OS Databases from JMP or JBP Applications

A JMP or JBP application can access DB2 UDB for z/OS databases by using the

DB2 JDBC/SQLJ 2.0 driver or the DB2 JDBC/SQLJ 1.2 driver. The JMP or JBP

region that the application is running in must also be defined with DB2 UDB for

z/OS attached by the DB2 Recoverable Resource Manager Services attachment

facility (RRSAF).

Related Reading: For information about attaching DB2 UDB for z/OS to IMS for

JMP or JBP application access to DB2 UDB for z/OS databases, see “Configuring

JMP and JBP Regions for DB2 UDB for z/OS Database Access” on page 16.

Accessing DB2 UDB for z/OS data from a JMP or JBP application is similar to

accessing IMS data. When writing a JMP or JBP application that accesses DB2 UDB

for z/OS data, consider both the differences from IMS database access and the

differences from accessing DB2 UDB for z/OS data in other environments:

v You can have only one active DB2 UDB for z/OS connection open at any time.

v For type 2 JDBC drivers, you must use the default connection URL in the

application program. For example, jdbc:db2os390: or db2:default:connection.

v For type 4 JDBC drivers, you can use a specific connection URL in the

application program.

v To commit or roll back work, you must use the

IMSTransaction.getTransaction().commit() method or the

IMSTransaction.getTransaction().rollback() method. For JMP applications,

theIMSTransaction.getTransaction().commit() method commits all work: SQL

calls and connection closures. For JBP applications, the

IMSTransaction.getTransaction().commit() method commits SQL calls.

v Because RRS is the coordinator, you cannot use the Connection.setAutoCommit or

Connection.commit method of the DB2 JDBC driver. You must always call

IMSTransaction.getTransaction().commit() after closing a connection to DB2

UDB for z/OS to commit the connection closure.

Note: You may experience unexpected behavior if you access a DB2 database

using both Java and COBOL in the same application, but only if the

commit/rollback processing is done in COBOL while active cursors are in

the Java portion.

COBOL Interoperability

34 IMS Java Guide and Reference

|
|

|
|

|
|
|
|

|
|
|
|

Related Reading: For a JMP programming model, see “JMP Application that

Accesses IMS or DB2 UDB for z/OS Data” on page 21. For a JBP programming

model, see “JBP Application that Accesses DB2 UDB for z/OS or IMS Data” on

page 30.

Program Switching in JMP and JBP Applications

IMS Java provides an API for immediate program switching in JMP and JBP

applications and for deferred program switching in conversational JMP

applications.

For more information about program switches, see the IMS Version 9: Application

Programming: Design Guide.

Immediate Program Switching for JMP and JBP Applications

The setModifiableAlternatePCB(String) method of the

com.ibm.ims.application.IMSMessageQueue class sets the name of the alternate PCB

for the program switch. The setModifiableAlternatePCB(String) method calls the

DL/I CHNG call.

To make a program switch in a JMP or JBP application:

1. Call the setModifiableAlternatePCB(String) method to set the name of the

alternate PCB.

2. Call the insertMessage(IMSFieldMessage) method to send the message to the

alternate PCB.

For more information about these methods, see the IMS Java API Specification.

Deferred Program Switching for Conversational JMP

Applications

You can make a deferred program switch in a conversational JMP application. A

deferred program switch changes the transaction code in the SPA before the SPA is

returned to IMS. When an application makes a deferred program switch, the

application replies to the terminal and passes the conversation to another

conversational application.

The setTransactionID(String) method of the

com.ibm.ims.application.IMSFieldMessage class specifies the transaction code in

the SPA.

To make a deferred program switch:

1. Call the insertMessage(IMSFieldMessage) method to send the output message

to the terminal.

2. Call the setTransactionID(String) method to set the name of the transaction

code in the SPA.

3. Call the insertMessage(IMSFieldMessage) method to send the SPA to IMS.

For more information about these methods, see the IMS Java API Specification.

DB2 UDB for z/OS Database Access

Chapter 2. JMP and JBP Applications 35

|

|
|
|

|
|

|

|
|
|
|

|

|
|

|
|

|

|

|

|
|
|
|
|

|
|
|

|

|
|

|
|

|

|

DB2 UDB for z/OS Database Access

36 IMS Java Guide and Reference

Chapter 3. WebSphere Application Server for z/OS

Applications

You can write applications that run on WebSphere Application Server for z/OS

and access IMS databases when WebSphere Application Server for z/OS and IMS

are on the same LPAR (logical partition).

To deploy an application on WebSphere Application Server for z/OS, you must

install the IMS JDBC resource adaptor (the IMS Java class libraries) on WebSphere

Application Server for z/OS, and configure both IMS open database access

(ODBA) and the database resource adapter (DRA).

Figure 13 shows an Enterprise JavaBean (EJB) that is accessing IMS data. JDBC or

IMS Java hierarchical interface calls are passed to the IMS Java layer, which

converts the calls to DL/I calls. The IMS Java layer passes these calls to ODBA,

which uses the DRA to access the DL/I region in IMS.

 The following topics provide additional information:

v “Configuring WebSphere Application Server for z/OS for IMS Java” on page 38

v “Running the IMS Java IVP on WebSphere Application Server for z/OS” on page

44

v “Running the IMS Java Sample Applications on WebSphere Application Server

for z/OS” on page 51

v “Running Your Applications on WebSphere Application Server for z/OS” on

page 59

v “Developing Enterprise Applications that Access IMS DB” on page 69

Figure 13. WebSphere Application Server for z/OS EJB Using IMS Java

© Copyright IBM Corp. 2000, 2006 37

Configuring WebSphere Application Server for z/OS for IMS Java

To use IMS Java with WebSphere Application Server for z/OS, you must use

WebSphere Application Server V5.0 for z/OS or later. If you have WebSphere

Application Server V5.0.2 for z/OS, you must install either V5.0.2.1 or APAR

PQ81944. You must also use RRS (resource recovery services) for z/OS.

To access IMS databases from WebSphere Application Server on a non-z/OS

platform, you must have WebSphere Application Server V5.0 for z/OS installed on

the same logical partition (LPAR) as IMS. You must configure WebSphere

Application Server for z/OS as well as WebSphere Application Server on the

non-z/OS platform. For information about setting up both of these servers, see

Chapter 4, “Remote Data Access with WebSphere Application Server Applications,”

on page 75.

Before you can deploy an application on WebSphere Application Server for z/OS,

you must configure the server. This topic provides the basic steps required to

configure the server.

To configure WebSphere Application Server for z/OS:

1. Update the JCL for WebSphere Application Server for z/OS by adding to the

STEPLIB the following data sets:

v The load library that contains the DRA startup table and the ODBA run-time

code

v The SDFSJLIB data set. This data set contains the DFSCLIB member.
2. If you are using WebSphere Application Server V5 for z/OS, add the following

required XML files to the server class path:

pathprefix/usr/lpp/ims/imsjava91/lib/xml-apis.jar

pathprefix/usr/lpp/ims/imsjava91/lib/xalan.jar

pathprefix/usr/lpp/ims/imsjava91/lib/xercesImpl.jar

3. Install the IMS JDBC resource adapter. The file name of the resource adapter is

pathprefix/usr/lpp/ims/imsjava91/imsjava91.rar and the file name of the

IMS Java library is pathprefix/usr/lpp/ims/imsjava91/imsjava.jar.

4. Modify the WebSphere Application Server for z/OS server.policy file, which is

in the properties directory of the WebSphere Application Server installation

directory, by adding the following code:

grant codeBase "file:/pathprefix/usr/lpp/ims/imsjava91/-" {

 //Allows the IMS JDBC resource adapter and the custom service to read and

 //write environment properties .

 permission java.util.PropertyPermission "*", "read, write";

 //Allows the IMS JDCB resource adapter and the custom service to use

 //the JavTDLI load library during runtime.

 permission java.lang.RuntimePermission "loadLibrary.JavTDLI";

};

5. Install the custom service. The class name is

com.ibm.connector2.ims.db.IMSJdbcCustomService and the class path is

pathprefix/usr/lpp/ims/imsjava91.

Detailed steps, specific to the version of WebSphere Application Server for z/OS

are also provided:

v “Configuring WebSphere Application Server V5 for z/OS” on page 39

v “Configuring WebSphere Application Server V6 for z/OS” on page 42

Configuring WebSphere Application Server for z/OS for IMS Java

38 IMS Java Guide and Reference

|

|
|

|
|
|
|
|
|
|
|
|

|

Configuring WebSphere Application Server V5 for z/OS

Prerequisite: “Installing IMS Java” on page 2

To configure WebSphere Application Server V5 for z/OS:

1. “Configuring WebSphere Application Server V5 for z/OS to Access IMS”

2. “Adding the Required XML Files to the WebSphere Application Server V5 for

z/OS Classpath”

3. “Installing the IMS JDBC Resource Adapter on WebSphere Application Server

V5 for z/OS” on page 40

4. “Installing the Custom Service on WebSphere Application Server V5 for z/OS”

on page 41

Next: “Running the IMS Java IVP on WebSphere Application Server for z/OS” on

page 44

Configuring WebSphere Application Server V5 for z/OS to

Access IMS

To use JDBC to access IMS DB from WebSphere Application Server for z/OS, you

first must configure WebSphere Application Server for z/OS to access IMS

databases using ODBA. ODBA uses the database resource adapter (DRA) to access

IMS databases.

Related Reading: For details about the steps in this section, see the ODBA section

of IMS Version 9: Installation Volume 2: System Definition and

Tailoring.

To configure WebSphere Application Server for z/OS to access IMS databases:

1. If not already done, create a DRA startup table. The DRA startup table module

name must have the following naming convention:

v Bytes 1-3: “DFS”

v Bytes 4-7: 1- to 4-byte ID

v Byte 8: “0”

Recommendation: The 1- to 4-byte ID should be the IMS system ID.

2. If not already done, link the DRA startup table into a load library.

3. Update the JCL for WebSphere Application Server for z/OS by adding to the

STEPLIB the following data sets:

v The load library that contains the DRA startup table and the ODBA run-time

code

v The SDFSJLIB data set. This data set contains the DFSCLIB member.
4. Note the DRA name, which is defined by the MBR parameter. You will need to

know bytes 4-7, which are usually the IMS system ID, when you install the

data source.

Next: “Adding the Required XML Files to the WebSphere Application Server V5

for z/OS Classpath”

Adding the Required XML Files to the WebSphere Application

Server V5 for z/OS Classpath

Applications that use the storeXML() and retrieveXML() UDFs need the XML

parser files that are described in “Downloading Apache Open Source XML

Configuring WebSphere Application Server for z/OS for IMS Java

Chapter 3. WebSphere Application Server for z/OS Applications 39

|
|

|
|
|
|

|

|
|
|
|

Libraries” on page 3. The IVP checks that you have the correct versions of the

XML parser files and that they are in the classpath. If you do not do this task, you

will receive an error when you run the IVP that you can choose to ignore if you

know that you do not use the XML functions of IMS Java.

Prerequisite: “Downloading Apache Open Source XML Libraries” on page 3

To add the required XML files to the WebSphere Application Server for z/OS

classpath:

1. From the WebSphere Application Server for z/OS administrative console, click

Environment, and then click Shared Libraries.

2. Click New.

3. In the Name field of the Configuration section, type a name for the shared

library. For example, type: XML Shared Library

4. In the Classpath field, type the path, including the file names, to the required

jar files. If you have installed SDK 1.4.2 or later, type the path to the file xml.jar

in the SDK 1.4.2 lib directory. If you downloaded the required XML files as

described in “Downloading Apache Open Source XML Libraries” on page 3,

type:

pathprefix/usr/lpp/ims/imsjava91/lib/xml-apis.jar

pathprefix/usr/lpp/ims/imsjava91/lib/xalan.jar

pathprefix/usr/lpp/ims/imsjava91/lib/xercesImpl.jar

5. Click OK.

6. Click Save.

The Save page is displayed.

7. Under Save to Master Configuration, click Save.

Next: “Installing the IMS JDBC Resource Adapter on WebSphere Application

Server V5 for z/OS”

Installing the IMS JDBC Resource Adapter on WebSphere

Application Server V5 for z/OS

After you configure WebSphere Application Server for z/OS to have access to IMS

databases, you must install the IMS JDBC resource adapter on WebSphere

Application Server for z/OS.

Prerequisite: “Configuring WebSphere Application Server V5 for z/OS to Access

IMS” on page 39

To install the IMS JDBC resource adapter:

1. From the WebSphere Application Server for z/OS administrative console, click

Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

2. Click Install RAR.

A dialog for installing the resource adapter is displayed.

3. Select Server path and type the path to the imsjava91.rar file:

pathprefix/usr/lpp/ims/imsjava91/imsjava91.rar

4. Click Next.

A configuration dialog is displayed.

5. Type the following information:

 Name: a name for the resource adapter

Configuring WebSphere Application Server for z/OS for IMS Java

40 IMS Java Guide and Reference

|
|
|
|

|

|
|

|
|

|

|
|

|
|
|
|
|

|
|
|

|

|

|

|

|
|

|
|

Classpath: the path to imsjava.jar, including the file name:

pathprefix/usr/lpp/ims/imsjava91/imsjava.jar

6. Click OK.

The IMS JDBC resource adapter is listed.

7. Click Save.

The Save page is displayed.

8. Under Save to Master Configuration, click Save to ensure that the changes

have been made.

Next: “Installing the Custom Service on WebSphere Application Server V5 for

z/OS”

Installing the Custom Service on WebSphere Application Server

V5 for z/OS

Prerequisite: “Installing the IMS JDBC Resource Adapter on WebSphere

Application Server V5 for z/OS” on page 40

When WebSphere Application Server for z/OS is started, the custom service

initializes the ODBA environment. When the server is stopped, the custom service

terminates the ODBA environment. After a server is started, every application that

is running in the server uses the initialized ODBA environment.

To install the custom service:

 1. Modify the WebSphere Application Server for z/OS server.policy file, which is

in the properties directory of the WebSphere Application Server installation

directory, by adding the following code:

grant codeBase "file:/pathprefix/usr/lpp/ims/imsjava91/-" {

 //Allows the IMS JDBC resource adapter and the custom service to read and

 //write environment properties .

 permission java.util.PropertyPermission "*", "read, write";

 //Allows the IMS JDCB resource adapter and the custom service to use

 //the JavTDLI load library during runtime.

 permission java.lang.RuntimePermission "loadLibrary.JavTDLI";

};

 2. In the left frame of the WebSphere Application Server for z/OS administrative

console, click Servers, and then click Application Servers.

A list of application servers is displayed.

 3. Click the name of the server on which you want to deploy your custom

service.

 4. Under Additional Properties, click Custom Services.

A list of custom services is displayed.

 5. Click New.

A configuration dialog is displayed.

 6. Select the Startup check box.

If you do not select the Startup check box, the custom service is not invoked

when you start the server.

 7. Type the following information:

 Classname: com.ibm.connector2.ims.db.IMSJdbcCustomService

 Display Name: a name for the custom service

 Classpath: the path to the directory that contains imsjava.jar and

libJavTDLI.so: pathprefix/usr/lpp/ims/imsjava91

Configuring WebSphere Application Server for z/OS for IMS Java

Chapter 3. WebSphere Application Server for z/OS Applications 41

|

|

|

|
|

|
|
|
|
|
|
|
|
|

|
|

|

|
|

|
|

|

8. Click OK.

The custom service is listed.

 9. Click Save.

The Save page is displayed.

10. Under Save to Master Configuration, click Save to ensure that the changes

have been made.

11. Restart the server in order for the custom service to take effect.

Next: “Running the IMS Java IVP on WebSphere Application Server for z/OS” on

page 44

Configuring WebSphere Application Server V6 for z/OS

This section assumes that you are familiar with WebSphere Application Server V6

for z/OS and its administrative console.

Prerequisite: “Installing IMS Java” on page 2

To configure WebSphere Application Server V6 for z/OS:

1. “Configuring WebSphere Application Server V6 for z/OS to Access IMS”

2. “Adding the Required XML Files to the WebSphere Application Server V5 for

z/OS Classpath” on page 39

3. “Installing the IMS JDBC Resource Adapter on WebSphere Application Server

V6 for z/OS” on page 43

4. “Installing the Custom Service on WebSphere Application Server V6 for z/OS”

on page 43

Configuring WebSphere Application Server V6 for z/OS to

Access IMS

To use JDBC to access IMS DB from WebSphere Application Server for z/OS, you

first must configure WebSphere Application Server for z/OS to access IMS

databases using ODBA. ODBA uses the database resource adapter (DRA) to access

IMS databases.

Related Reading: For details about the steps in this section, see the ODBA section

of IMS Version 9: Installation Volume 2: System Definition and

Tailoring.

To configure WebSphere Application Server for z/OS to access IMS databases:

1. If not already done, create a DRA startup table. The DRA startup table module

name must have the following naming convention:

v Bytes 1-3: “DFS”

v Bytes 4-7: 1- to 4-byte ID

v Byte 8: “0”

Recommendation: The 1- to 4-byte ID should be the IMS system ID.

2. If not already done, link the DRA startup table into a load library.

3. Update the JCL for WebSphere Application Server for z/OS by adding to the

STEPLIB the following data sets:

v The load library that contains the DRA startup table and the ODBA run-time

code

v The SDFSJLIB data set. This data set contains the DFSCLIB member.

Configuring WebSphere Application Server for z/OS for IMS Java

42 IMS Java Guide and Reference

|

|

|
|

|
|

|
|
|
|

|

4. Note the DRA name, which is defined by the MBR parameter. You will need to

know bytes 4-7, which are usually the IMS system ID, when you install the

data source.

Next: “Installing the IMS JDBC Resource Adapter on WebSphere Application

Server V6 for z/OS”

Installing the IMS JDBC Resource Adapter on WebSphere

Application Server V6 for z/OS

After you configure WebSphere Application Server for z/OS to have access to IMS

databases, you must install the IMS JDBC resource adapter on WebSphere

Application Server for z/OS.

Prerequisite: “Configuring WebSphere Application Server V6 for z/OS to Access

IMS” on page 42

To install the IMS JDBC resource adapter:

1. From the WebSphere Application Server for z/OS administrative console, click

Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

2. Click Install RAR.

A dialog for installing the resource adapter is displayed.

3. Select Server path and type the path to the imsjava91.rar file:

pathprefix/usr/lpp/ims/imsjava91/imsjava91.rar

4. Click Next.

A configuration dialog is displayed.

5. Type the following information:

 Name: a name for the resource adapter

 Classpath: the path to imsjava.jar, including the file name:

pathprefix/usr/lpp/ims/imsjava91/imsjava.jar

6. Click OK.

The IMS JDBC resource adapter is listed.

7. In the messages box, click Save.

The save page is displayed.

8. Click Save to update the master repository with your changes.

Next: “Installing the Custom Service on WebSphere Application Server V6 for

z/OS”

Installing the Custom Service on WebSphere Application Server

V6 for z/OS

Prerequisite: “Installing the IMS JDBC Resource Adapter on WebSphere

Application Server V6 for z/OS”

When WebSphere Application Server for z/OS is started, the custom service

initializes the ODBA environment. When the server is stopped, the custom service

terminates the ODBA environment. After a server is started, every application that

is running in the server uses the initialized ODBA environment.

To install the custom service:

Configuring WebSphere Application Server for z/OS for IMS Java

Chapter 3. WebSphere Application Server for z/OS Applications 43

|
|

|

|

|

|

1. Modify the WebSphere Application Server for z/OS server.policy file, which is

in the properties directory (for example, installdir/profiles/default/properties),

by adding the following code:

grant codeBase "file:/pathprefix/usr/lpp/ims/imsjava91/-" {

 //Allows the IMS JDBC resource adapter and the custom service to read and

 //write environment properties .

 permission java.util.PropertyPermission "*", "read, write";

 //Allows the IMS JDCB resource adapter and the custom service to use

 //the JavTDLI load library during runtime.

 permission java.lang.RuntimePermission "loadLibrary.JavTDLI";

};

 2. In the left frame of the WebSphere Application Server for z/OS administrative

console, click Servers, and then click Application servers.

A list of application servers is displayed.

 3. Click the name of the server on which you want to deploy your custom

service.

 4. Under Server Infrastructure, click Administration, and then click Custom

Services.

A list of custom services is displayed.

 5. Click New.

A configuration dialog is displayed.

 6. Select the Enable service at server startup check box.

If you do not select this check box, the custom service is not invoked when

you start the server.

 7. Type the following information:

 Classname: com.ibm.connector2.ims.db.IMSJdbcCustomService

 Display Name: a name for the custom service

 Classpath: the path to the directory that contains imsjava.jar and

libJavTDLI.so: pathprefix/usr/lpp/ims/imsjava91

 8. Click OK.

The custom service is listed.

 9. In the messages box, click Save.

The save page is displayed.

10. Click Save to update the master repository with your changes.

11. Restart the server in order for the custom service to take effect.

Next: “Running the IMS Java IVP on WebSphere Application Server V6 for z/OS”

on page 48

Running the IMS Java IVP on WebSphere Application Server for z/OS

Run the IMS Java IVP on WebSphere Application Server for z/OS to ensure that

you have configured IMS and WebSphere Application Server for z/OS properly.

This topic provides the high-level tasks required to run the IMS Java IVP.

To run the IMS Java IVP on WebSphere Application Server for z/OS:

1. Install the data source of the IMS Java IVP as a new J2C connection factory. The

JNDI name is imsjavaIVP. The database view name is

samples.ivp.DFSIVP37DatabaseView.

2. Install the IMS Java IVP EAR file. The file is pathprefix/usr/lpp/ims/
imsjava91/samples/ivp/was/imsjavaIVP.ear.

Configuring WebSphere Application Server for z/OS for IMS Java

44 IMS Java Guide and Reference

|
|
|
|
|
|
|
|
|

|
|

|

|
|

|
|

|

|

|

|

3. If you are using WebSphere Application Server V5 for z/OS, add the required

XML files to the IVP application class path.

4. Test the IVP. The URL is http://host_IP_address:port/IMSJavaIVPWeb/
IMSJavaIVP.html.

Detailed information about running the IMS Java IVP on specific versions of

WebSphere Application Server for z/OS is available:

v “Running the IMS Java IVP on WebSphere Application Server V5 for z/OS”

v “Running the IMS Java IVP on WebSphere Application Server V6 for z/OS” on

page 48

Running the IMS Java IVP on WebSphere Application Server

V5 for z/OS

Prerequisites:

v “Configuring WebSphere Application Server for z/OS for IMS

Java” on page 38

v Ensure that the standard IMS IVPs have been run. The IMS IVPs

prepare the DBD for the IVP database, named IVPDB2, and load

the IVP database. They also prepare the IMS Java application PSB

(named DFSIVP37), build ACBs, and prepare other IMS control

blocks that are required by the IMS Java IVPs. For details about

how to run the IMS IVPs, see IMS Version 9: Installation Volume 1:

Installation Verification.

To run the IMS Java IVP for WebSphere Application Server for z/OS:

1. “Installing the Data Source for the IMS Java IVP on WebSphere Application

Server V5 for z/OS”

2. “Installing the IMS Java IVP on WebSphere Application Server V5 for z/OS” on

page 46

3. “Adding the XML Files to the IVP Classpath on WebSphere Application Server

V5 for z/OS” on page 47

4. “Testing the IMS Java IVP on WebSphere Application Server V5 for z/OS” on

page 48

Installing the Data Source for the IMS Java IVP on WebSphere

Application Server V5 for z/OS

The DataSource facility is a factory for connections to a physical data source, or

database. A data source is registered with a naming service based on the Java

Naming and Directory (JNDI) API. DataSource objects have properties that pertain

to the actual data source that an application needs to access.

Requirement: You must use the DataSource facility, which replaces the

DriverManager facility, because the DriverManager facility is not

supported by the J2EE Connection Architecture Specification.

To install the data source for the IVP:

 1. In the left frame of the WebSphere Application Server for z/OS administrative

console, click Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

Running the IMS Java IVP on WebSphere Application Server for z/OS

Chapter 3. WebSphere Application Server for z/OS Applications 45

|
|
|
|

|
|
|

2. Click the name of IMS JDBC resource adapter that you chose when you

installed the adapter.

A configuration dialog is displayed.

 3. Under Additional Properties, click J2C Connection Factories.

 4. Click New.

A configuration dialog is displayed.

 5. Type the following information:

 Name: name for the data source

 JNDI Name: imsjavaIVP

 6. Click OK.

The data source is listed in the J2C Connection Factories.

 7. Click the name of the data source that you installed in step 5.

 8. Under Additional Properties, click Custom Properties.

Six properties are listed in a table.

 9. In the DRAName row, click the dash symbol in the Value column.

10. In the Value field, type bytes 4-7 of the DRA startup table module name

(usually the IMS system ID). For more information about the DRA startup

table, see “Configuring WebSphere Application Server V6 for z/OS to Access

IMS” on page 42.

11. Click OK.

The properties table displays the DRA name that you just entered.

12. In the DatabaseViewName row, click the dash symbol in the Value column.

13. In the Value field, type samples.ivp.DFSIVP37DatabaseView

14. Click OK.

The properties table displays the host name that you just entered.

15. Click Save.

The Save page is displayed.

16. Under Save to Master Configuration, click Save.

17. Restart the server to ensure that the changes have been made.

Next: “Installing the IMS Java IVP on WebSphere Application Server V6 for z/OS”

on page 50

Installing the IMS Java IVP on WebSphere Application Server V5

for z/OS

Prerequisite: “Installing the Data Source for the IMS Java IVP on WebSphere

Application Server V6 for z/OS” on page 49
This section describes how to deploy the IMS Java IVP on WebSphere Application

Server for z/OS.

To install the IMS Java IVP:

 1. From the WebSphere Application Server for z/OS administrative console, click

Applications, and then click Install New Application.

A dialog for installing the application is displayed.

 2. Select Server path and type the path to IMSJavaIVP.ear: pathprefix/usr/lpp/
ims/imsjava91/samples/ivp/was/imsjavaIVP.ear

 3. Click Next.

 4. Accept the defaults and click Next.

Running the IMS Java IVP on WebSphere Application Server for z/OS

46 IMS Java Guide and Reference

|
|
|
|

|

The Install New Application wizard is started. Step 1, ″Provide options to

perform the installation,″ is displayed.

 5. Clear the Create MBeans for Resources check box.

 6. Click Next.

Step 2, ″Provide JNDI Names for Beans,″ is displayed.

 7. In the JNDI Name field, verify that the name is as follows:

ejb/samples/ivp/was/IMSJavaIVPSessionHome

 8. Click Next.

Step 3, ″Map resource references to resources,″ is displayed.

 9. In the JNDI Name field, verify that the name is as follows: imsjavaIVP

10. Click Next.

Step 4, ″Map virtual hosts for web modules,″ is displayed.

11. Accept the defaults and click Next.

Step 5, ″Map modules to application servers,″ is displayed.

12. Accept the defaults and click Next.

Step 6, ″Ensure all unprotected 2.0 methods have the correct level of

protection,″ is displayed.

13. Make any necessary changes and click Next.

The options that you specified are displayed in Step 7, ″Summary,″ of the

Install New Application wizard.

14. Verify that the options are correct, and then click Finish.

A message is displayed that indicates first that the application is being

installed, and then that the installation was successful.

15. Click Save to Master Configuration.

The Save page is displayed.

16. Under Save to Master Configuration, click Save.

Next: “Adding the XML Files to the IVP Classpath on WebSphere Application

Server V5 for z/OS”

Adding the XML Files to the IVP Classpath on WebSphere

Application Server V5 for z/OS

The IVP tests that the required XML files are installed and in the WebSphere

classpath. For the IVP to find these files, you must add these files to the

application classpath. If you do no not do this task, you will receive an error when

you run the IVP.

Prerequisite: “Installing the IMS Java IVP on WebSphere Application Server V6 for

z/OS” on page 50

To add the XML files to the application classpath:

 1. From the WebSphere Application Server for z/OS administrative console, click

Applications, and then click Enterprise Applications.

The application IMSJava IVP is listed.

 2. Click IMSJava IVP.

 3. Under General Properties, in the Classloader Mode field, select

PARENT_LAST.

 4. Click Apply.

 5. Under Additional Properties, click Libraries.

Running the IMS Java IVP on WebSphere Application Server for z/OS

Chapter 3. WebSphere Application Server for z/OS Applications 47

|

|

|

|
|

|

|

|

|
|
|
|
|
|

|
|

|

|
|

|

|

|
|

|

|

6. Click Add.

 7. In the Library Name field, select the shared library that you created in

“Adding the Required XML Files to the WebSphere Application Server V5 for

z/OS Classpath” on page 39. For example, select XML Shared Library.

 8. Click OK.

 9. Click Save.

The Save page is displayed.

10. Under Save to Master Configuration, click Save.

Next: “Testing the IMS Java IVP on WebSphere Application Server V5 for z/OS”

Testing the IMS Java IVP on WebSphere Application Server V5

for z/OS

Prerequisite: “Adding the XML Files to the IVP Classpath on WebSphere

Application Server V5 for z/OS” on page 47

This topic describes how to test the IVP on WebSphere Application Server for

z/OS.

To test the IMS Java IVP:

1. From the WebSphere Application Server for z/OS administrative console, click

Applications, and then click Enterprise Applications.

The application IMSJava IVP is listed with a red X, which indicates that the

application is stopped.

2. Select IMSJava IVP.

3. Click Start.

The application IMSJava IVP is listed with a green arrow, which indicates that

the application is started.

4. Open a Web browser.

5. Type the Web address:

http://host_IP_address:port/IMSJavaIVPWeb/IMSJavaIVP.html

An input Web page opens.

6. Click Run the IVP.

If WebSphere Application Server for z/OS is configured properly, the IVP

displays ″The IVP was SUCCESSFUL″ and the results of checks performed by

the IVP.

If WebSphere Application Server for z/OS is not configured properly, the IVP

displays ″The IVP was NOT SUCCESSFUL″ and the results of checks

performed by the IVP.

Running the IMS Java IVP on WebSphere Application Server

V6 for z/OS

Prerequisites:

v “Configuring WebSphere Application Server V6 for z/OS” on

page 42

v Ensure that the standard IMS IVPs have been run. The IMS IVPs

prepare the DBD for the IVP database, named IVPDB2, and load

the IVP database. They also prepare the IMS Java application PSB

Running the IMS Java IVP on WebSphere Application Server for z/OS

48 IMS Java Guide and Reference

|

|
|
|

|

|

|

|

|

|

|

(named DFSIVP37), build ACBs, and prepare other IMS control

blocks that are required by the IMS Java IVPs. For details about

how to run the IMS IVPs, see IMS Version 9: Installation Volume 1:

Installation Verification.

To run the IMS Java IVP for WebSphere Application Server for z/OS:

1. “Installing the Data Source for the IMS Java IVP on WebSphere Application

Server V6 for z/OS”

2. “Installing the IMS Java IVP on WebSphere Application Server V6 for z/OS” on

page 50

3. “Testing the IMS Java IVP on WebSphere Application Server V6 for z/OS” on

page 50

Installing the Data Source for the IMS Java IVP on WebSphere

Application Server V6 for z/OS

The DataSource facility is a factory for connections to a physical data source, or

database. A data source is registered with a naming service based on the Java

Naming and Directory (JNDI) API. DataSource objects have properties that pertain

to the actual data source that an application needs to access.

Requirement: You must use the DataSource facility, which replaces the

DriverManager facility, because the DriverManager facility is not

supported by the J2EE Connection Architecture Specification.

To install the data source for the IVP:

 1. In the left frame of the WebSphere Application Server for z/OS administrative

console, click Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

 2. Click the name of IMS JDBC resource adapter that you chose when you

installed the adapter.

A configuration dialog is displayed.

 3. Under Additional Properties, click J2C connection factories.

 4. Click New.

A configuration dialog is displayed.

 5. Type the following information:

 Name: name for the data source

 JNDI Name: imsjavaIVP

 6. Click OK.

The data source is listed in the J2C Connection Factories.

 7. Click the name of the data source that you installed in step 5.

 8. Under Additional Properties, click Custom properties.

Three properties are listed in a table.

 9. Click DatabaseViewName.

A configuration dialog is displayed.

10. In the Value field, type: samples.ivp.DFSIVP37DatabaseView

11. Click OK.

The properties table displays the DatabaseViewName value that you just

entered.

12. Click DRAName.

A configuration dialog is displayed.

Running the IMS Java IVP on WebSphere Application Server for z/OS

Chapter 3. WebSphere Application Server for z/OS Applications 49

|
|
|
|

|
|
|

13. In the Value field, type bytes 4-7 of the DRA startup table module name

(usually the IMS system ID). For more information about the DRA startup

table, see “Configuring WebSphere Application Server V6 for z/OS to Access

IMS” on page 42.

14. Click OK.

The properties table displays the DRA name that you just entered.

15. In the messages box, click Save.

The save page is displayed.

16. Click Save to update the master repository with your changes.

17. Restart the server in order for the custom service to take effect.

Next: “Installing the IMS Java IVP on WebSphere Application Server V6 for z/OS”

Installing the IMS Java IVP on WebSphere Application Server V6

for z/OS

Prerequisite: “Installing the Data Source for the IMS Java IVP on WebSphere

Application Server V6 for z/OS” on page 49
This section describes how to deploy the IMS Java IVP on WebSphere Application

Server V6 for z/OS.

To install the IMS Java IVP:

1. From the WebSphere Application Server for z/OS administrative console, click

Applications, and then click Install New Application.

A dialog for installing the application is displayed.

2. Select Remote file system and type the path to IMSJavaIVP.ear:

pathprefix/usr/lpp/ims/imsjava91/samples/ivp/was/imsjavaIVP.ear

3. Click Next.

4. Accept the defaults and click Next.

The Install New Application wizard is started.

5. Click Step 7 to accept the installation defaults. Depending on your specific

server configuration, you might have to use the wizard to change some default

values.

6. Verify that the options are correct, and then click Finish.

A message is displayed that indicates first that the application is being

installed, and then that the installation was successful.

7. Click Save to Master Configuration.

The save page is displayed.

8. Click Save to update the master repository with your changes.

Next: “Testing the IMS Java IVP on WebSphere Application Server V6 for z/OS”

Testing the IMS Java IVP on WebSphere Application Server V6

for z/OS

Prerequisite: “Installing the IMS Java IVP on WebSphere Application Server V6 for

z/OS”

This topic describes how to test the IVP on WebSphere Application Server V6 for

z/OS.

Running the IMS Java IVP on WebSphere Application Server for z/OS

50 IMS Java Guide and Reference

|

|

|

|
|
|
|

|

|

|

|

To test the IMS Java IVP:

1. From the WebSphere Application Server for z/OS administrative console, click

Applications, and then click Enterprise Applications.

The application IMSJava IVP is listed with a red X, which indicates that the

application is stopped.

2. Select IMSJava IVP.

3. Click Start.

The application IMSJava IVP is listed with a green arrow, which indicates that

the application is started.

4. Open a Web browser.

5. Type the Web address:

http://host_IP_address:port/IMSJavaIVPWeb/IMSJavaIVP.html

An input Web page opens.

6. Click Run the IVP.

If WebSphere Application Server for z/OS is configured properly, the IVP

displays ″The IVP was SUCCESSFUL″ and the results of checks performed by

the IVP.

If WebSphere Application Server for z/OS is not configured properly, the IVP

displays ″The IVP was NOT SUCCESSFUL″ and the results of checks

performed by the IVP.

Running the IMS Java Sample Applications on WebSphere Application

Server for z/OS

IMS provides two sample Java applications for WebSphere Application Server for

z/OS. The phonebook sample application uses the same database as the IVP

application, but allows different queries against the database. The dealership

sample application queries a sample dealership database.

You do not need to run either sample application to verify the installation of IMS

Java for WebSphere Application Server for z/OS. This sample application is

provided to show more complex queries and a more complex database than the

IVP application.

This topic describes the high-level tasks that you must complete, along with the

IMS-specific information required, to run the IMS Java sample applications.

To run the IMS Java sample application on WebSphere Application Server for

z/OS:

1. Install the data source for the IMS Java sample application as a J2C connection

factory.

JNDI name:

v Phonebook sample: imsjavaPhonebook

v Dealership sample: jdbc/DealershipSample

Database view name:

v Phonebook sample: samples.ivp.DFSIVP37DatabaseView

v Dealership sample: samples.dealership.AUTPSB11DatabaseView

2. Install and start the IMS Java sample application EAR file.

EAR file path:

v Phonebook sample:

Running the IMS Java IVP on WebSphere Application Server for z/OS

Chapter 3. WebSphere Application Server for z/OS Applications 51

|

|

pathprefix/usr/lpp/ims/imsjava91/samples/

ivp/was/IMSJavaPhonebook.ear

v Dealership sample:

pathprefix/usr/lpp/ims/imsjava91/samples/

dealership/was/imsjavaDealership.ear

EJB home interface:

v Phonebook sample:

ejb/samples/phonebook/was/IMSJavaPhonebookSessionHome

v Dealership sample:

samples.dealership.was.DealershipSessionHome

3. Test the sample application.

Sample application URL:

v Phonebook sample:

http://host_IP_address:port/IMSJavaPhonebookWeb/IMSJavaPhonebook.html

v Dealership sample:

http://host_IP_address:port/IMSDealershipWeb/dealership.html

Sample input data:

v Phonebook sample:

 Last Name: LAST1

v Dealership sample:

 Car Make: FORD

 VIN Number: V234567890123456789V

Detailed information about running the IMS Java sample applications on specific

versions of WebSphere Application Server for z/OS is available:

v “Running the IMS Java Sample Applications on WebSphere Application Server

V5 for z/OS”

v “Running the IMS Java Sample Applications on WebSphere Application Server

V6 for z/OS” on page 56

Running the IMS Java Sample Applications on WebSphere

Application Server V5 for z/OS

Prerequisite: “Running the IMS Java IVP on WebSphere Application Server for

z/OS” on page 44

To run the IMS Java sample applications on WebSphere Application Server for

z/OS:

1. “Installing the Data Source for the IMS Java Samples on WebSphere Application

Server V5 for z/OS”

2. “Installing the IMS Java Sample Applications on WebSphere Application Server

V5 for z/OS” on page 54

3. “Testing the IMS Java Sample Applications on WebSphere Application Server

V5 for z/OS” on page 55

Installing the Data Source for the IMS Java Samples on

WebSphere Application Server V5 for z/OS

The DataSource facility is a factory for connections to a physical data source, or

database. A data source is registered with a naming service based on the Java

Running the IMS Java Sample Applications on WebSphere Application Server for z/OS

52 IMS Java Guide and Reference

|

|
|

|

|

|

|

|

|

|

|
|

Naming and Directory (JNDI) API. DataSource objects have properties that pertain

to the actual data source that an application needs to access.

Requirement: You must use the DataSource facility, which replaces the

DriverManager facility, because the DriverManager facility is not

supported by the J2EE Connection Architecture Specification.

To install the data source for the IMS Java samples:

 1. In the left frame of the WebSphere Application Server for z/OS administrative

console, click Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

 2. Click the name of IMS JDBC resource adapter that you chose when you

installed the adapter.

A configuration dialog is displayed.

 3. Under Additional Properties, click J2C Connection Factories.

 4. Click New.

A configuration dialog is displayed.

 5. Type the following information:

 Name: name for the data source

 JNDI Name: path to the data source.

– For the phonebook sample, type: imsjavaPhonebook

– For the dealership sample, type: jdbc/DealershipSample

 6. Click OK.

The data source is listed in the J2C Connection Factories.

 7. Click the name of the data source that you installed in step 5.

 8. Under Additional Properties, click Custom Properties.

Six properties are listed in a table.

 9. In the DRAName row, click the dash symbol in the Value column.

10. In the Value field, type bytes 4-7 of the DRA startup table module name

(usually the IMS system ID). For more information about the DRA startup

table, see “Configuring WebSphere Application Server V6 for z/OS to Access

IMS” on page 42.

11. Click OK.

The properties table displays the DRA name that you just entered.

12. In the DatabaseViewName row, click the dash symbol in the Value column.

13. In the Value field, type the fully-qualified DLIDatabaseView subclass name.

v For the phonebook sample, type: samples.ivp.DFSIVP37DatabaseView

v For the dealership sample, type:samples.dealership.AUTPSB11DatabaseView
14. Click OK.

The properties table displays the host name that you just entered.

15. Optionally, set the trace level for the applications. See “Enabling J2EE Tracing

with WebSphere Application Server V5” on page 103.

16. Click Save.

The Save page is displayed.

17. Under Save to Master Configuration, click Save.

18. Restart the server.

Next: “Installing the IMS Java Sample Applications on WebSphere Application

Server V5 for z/OS” on page 54

Running the IMS Java Sample Applications on WebSphere Application Server for z/OS

Chapter 3. WebSphere Application Server for z/OS Applications 53

|
|

|
|
|

|
|

|

Installing the IMS Java Sample Applications on WebSphere

Application Server V5 for z/OS

Prerequisite: “Installing the Data Source for the IMS Java Samples on WebSphere

Application Server V5 for z/OS” on page 52

This topic describes how to install one of the IMS Java sample applications on

WebSphere Application Server for z/OS. The two sample applications are the

phonebook sample and the dealership sample. You must perform this task once for

each sample.

To install the sample applications:

 1. From the WebSphere Application Server for z/OS administrative console, click

Applications, and then click Install New Application.

A dialog for installing a new application is displayed.

 2. Select Server path and type the path to the EAR file.

EAR file path:

v For the phonebook sample, type the path to IMSJavaPhonebook.ear:

pathprefix/usr/lpp/ims/imsjava91/samples/

ivp/was/IMSJavaPhonebook.ear

v For the dealership sample, type the path to imsjavaDealership.ear:

pathprefix/usr/lpp/ims/imsjava91/samples/

dealership/was/imsjavaDealership.ear

 3. Click Next.

 4. Accept the defaults and click Next.

The Install New Application wizard is started. Step 1, ″Provide options to

perform the installation,″ is displayed.

 5. Clear the Create MBeans for Resources check box.

 6. Click Next.

Step 2, ″Provide JNDI Names for Beans,″ is displayed.

 7. In the JNDI Name field, type the path to the EJB home interface.

v For the phonebook sample, verify that name is as follows:

ejb/samples/phonebook/was/IMSJavaPhonebookSessionHome

v For the dealership sample, type:

samples.dealership.was.DealershipSessionHome

 8. Click Next.

Step 3, ″Map resource references to resources,″ is displayed.

 9. For the phonebook sample, verify that the JNDI name of resource references

of the IMSJava phSample EJB module is imsjavaPhonebook.

For the dealership sample, in the JNDI Name field for the IMSDealershipWeb

module, type: jdbc/DealershipSample

10. Click Next.

Step 4, ″Map virtual hosts for web modules,″ is displayed.

11. Accept the defaults and click Next.

Step 5, ″Map modules to application servers,″ is displayed.

12. Accept the defaults and click Next.

Step 6, ″Ensure all unprotected 2.0 methods have the correct level of

protection,″ is displayed.

13. Make any necessary changes and click Next.

Running the IMS Java Sample Applications on WebSphere Application Server for z/OS

54 IMS Java Guide and Reference

|

|

|

|
|

|

|
|

|

|

|

|

|

|
|

The options that you specified are displayed in Step 7, ″Summary,″ of the

Install New Application wizard.

14. Verify that the options are correct, and then click Finish.

A message is displayed that indicates first that the application is being

installed, and then that the installation was successful.

15. Click Save to Master Configuration.

The Save page is displayed.

16. Under Save to Master Configuration, click Save.

Next: “Testing the IMS Java Sample Applications on WebSphere Application Server

V5 for z/OS”

Testing the IMS Java Sample Applications on WebSphere

Application Server V5 for z/OS

Prerequisite: “Installing the IMS Java Sample Applications on WebSphere

Application Server V5 for z/OS” on page 54

This section describes how to test the phonebook or dealership sample application

on WebSphere Application Server for z/OS.

To test the phonebook or dealership sample:

1. From the WebSphere Application Server for z/OS administrative console, click

Applications, and then click Enterprise Applications.

The application that you installed is listed with a red X, which indicates that

the application is stopped.

2. Select the application.

v For the phonebook sample, select IMSJava pbSample.

v For the dealership sample, select IMSDealershipEAR.
3. Click Start.

The application is listed with a green arrow, which indicates that the

application is started.

4. Open a Web browser.

5. Type the Web address of the application.

v For the phonebook sample, type:

http://host_IP_address:port/IMSJavaPhonebookWeb/IMSJavaPhonebook.html

v For the dealership sample, type:

http://host_IP_address:port/IMSDealershipWeb/dealership.html

An input Web page opens.

v For the phonebook sample, the page is titled WebSphere Phonebook Sample

for IMS Java.

v For the dealership sample, the page is titled Find a car in stock.
6. Type input.

v For the phonebook, type the following information:

 Last Name: LAST1

v For the dealership sample, verify that Car Make and VIN Number fields

contain the following information:

 Car Make: FORD

 VIN Number: V234567890123456789V

Running the IMS Java Sample Applications on WebSphere Application Server for z/OS

Chapter 3. WebSphere Application Server for z/OS Applications 55

|

|
|

|
|

|

|

7. Click Submit.

If WebSphere Application Server for z/OS is configured properly, the output is

displayed.

v For the phonebook, the following information is displayed:

Result: Person found! FirstName: FIRST1 LastName: LAST1

Extension: 8-111-1111 ZipCode: D01/R01

v For the dealership sample, a message indicating that the query was

successful is displayed.

Running the IMS Java Sample Applications on WebSphere

Application Server V6 for z/OS

Prerequisite: “Running the IMS Java IVP on WebSphere Application Server for

z/OS” on page 44

To run the IMS Java sample applications on WebSphere Application Server for

z/OS:

1. “Installing the Data Source for the IMS Java Samples on WebSphere Application

Server V6 for z/OS”

2. “Installing the IMS Java Sample Applications on WebSphere Application Server

V6 for z/OS” on page 57

3. “Testing the IMS Java Sample Applications on WebSphere Application Server

V6 for z/OS” on page 58

Installing the Data Source for the IMS Java Samples on

WebSphere Application Server V6 for z/OS

The DataSource facility is a factory for connections to a physical data source, or

database. A data source is registered with a naming service based on the Java

Naming and Directory (JNDI) API. DataSource objects have properties that pertain

to the actual data source that an application needs to access.

Requirement: You must use the DataSource facility, which replaces the

DriverManager facility, because the DriverManager facility is not

supported by the J2EE Connection Architecture Specification.

To install the data source for the IMS Java samples:

 1. In the left frame of the WebSphere Application Server for z/OS administrative

console, click Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

 2. Click the name of IMS JDBC resource adapter that you chose when you

installed the adapter.

A configuration dialog is displayed.

 3. Under Additional Properties, click J2C connection factories.

 4. Click New.

A configuration dialog is displayed.

 5. Type the following information:

 Name: name for the data source

 JNDI Name: path to the data source.

– For the phonebook sample, type: imsjavaPhonebook

– For the dealership sample, type: jdbc/DealershipSample

 6. Click OK.

Running the IMS Java Sample Applications on WebSphere Application Server for z/OS

56 IMS Java Guide and Reference

|
|
|
|

|
|
|

The data source is listed in the J2C Connection Factories.

 7. Click the name of the data source that you installed in step 5.

 8. Under Additional Properties, click Custom properties.

Three properties are listed in a table.

 9. Click DatabaseViewName.

A configuration dialog is displayed.

10. In the Value field, type the fully-qualified DLIDatabaseView subclass name.

v For the phonebook sample, type: samples.ivp.DFSIVP37DatabaseView

v For the dealership sample, type:samples.dealership.AUTPSB11DatabaseView
11. Click OK.

The properties table displays the DatabaseViewName value that you just

entered.

12. Click DRAName.

A configuration dialog is displayed.

13. In the Value field, type bytes 4-7 of the DRA startup table module name

(usually the IMS system ID). For more information about the DRA startup

table, see “Configuring WebSphere Application Server V6 for z/OS to Access

IMS” on page 42.

14. Click OK.

The properties table displays the DRA name that you just entered.

15. In the messages box, click Save.

The save page is displayed.

16. Click Save to update the master repository with your changes.

17. Restart the server in order for the custom service to take effect.

Next: “Installing the IMS Java Sample Applications on WebSphere Application

Server V6 for z/OS”

Installing the IMS Java Sample Applications on WebSphere

Application Server V6 for z/OS

Prerequisite: “Installing the Data Source for the IMS Java Samples on WebSphere

Application Server V6 for z/OS” on page 56

This topic describes how to install one of the IMS Java sample applications on

WebSphere Application Server for z/OS. The two sample applications are the

phonebook sample and the dealership sample. You must perform this task once for

each sample.

To install the sample applications:

 1. From the WebSphere Application Server for z/OS administrative console, click

Applications, and then click Install New Application.

A dialog for installing a new application is displayed.

 2. Select Remote file system and type the path to the EAR file:

v For the phonebook sample, type the path to IMSJavaPhonebook.ear:

pathprefix/usr/lpp/ims/imsjava91/samples/

phonebook/was/IMSJavaPhonebook.ear

v For the dealership sample, type the path to imsjavaDealership.ear:

pathprefix/usr/lpp/ims/imsjava91/samples/

dealership/was/imsjavaDealership.ear

Running the IMS Java Sample Applications on WebSphere Application Server for z/OS

Chapter 3. WebSphere Application Server for z/OS Applications 57

|

|

|

|

|

|
|

|

|
|

3. Click Next.

 4. Accept the defaults and click Next.

Application security warnings are displayed.

 5. Click Continue.

The Install New Application wizard is started.

 6. Click Step 3.

Step 3, ″Provide JNDI Names for Beans,″ is displayed.

 7. In the JNDI Name field, type the path to the EJB home interface.

v For the phonebook sample, verify that name is ejb/samples/phonebook/
was/IMSJavaPhonebookSessionHome.

v For the dealership sample, type:

samples.dealership.was.DealershipSessionHome

 8. Click Step 4.

Step 4, ″Map resource references to resources,″ is displayed.

 9. For the phonebook sample, verify that the JNDI name of resource references

of the IMSJava phSample EJB module is imsjavaPhonebook.

For the dealership sample, in the JNDI Name field for the IMSDealershipWeb

module, type: jdbc/DealershipSample

10. Click Step 7.

If application resource warnings appear, verify that the resource assignments

are correct and click Continue.

11. On the summary page, verify that the options are correct, and then click

Finish.

A message is displayed that indicates first that the application is being

installed, and then that the installation was successful.

12. Click Save to Master Configuration.

The save page is displayed.

13. Click Save to update the master repository with your changes.

Next: “Testing the IMS Java Sample Applications on WebSphere Application Server

V6 for z/OS”

Testing the IMS Java Sample Applications on WebSphere

Application Server V6 for z/OS

Prerequisite: “Installing the IMS Java Sample Applications on WebSphere

Application Server V6 for z/OS” on page 57

This section describes how to test the phonebook or dealership sample application

on WebSphere Application Server for z/OS.

To test the phonebook or dealership sample:

1. From the WebSphere Application Server for z/OS administrative console, click

Applications, and then click Enterprise Applications.

The application that you installed is listed with a red X, which indicates that

the application is stopped.

2. Select the application.

v For the phonebook sample, select IMSJava pbSample.

v For the dealership sample, select IMSDealershipEAR.
3. Click Start.

Running the IMS Java Sample Applications on WebSphere Application Server for z/OS

58 IMS Java Guide and Reference

|

|

|

The application is listed with a green arrow, which indicates that the

application is started.

4. Open a Web browser.

5. Type the Web address of the application.

v For the phonebook sample, type:

http://host_IP_address:port/IMSJavaPhonebookWeb/IMSJavaPhonebook.html

v For the dealership sample, type:

http://host_IP_address:port/IMSDealershipWeb/dealership.html

An input Web page opens.

v For the phonebook sample, the page is titled WebSphere Phonebook Sample

for IMS Java.

v For the dealership sample, the page is titled Find a car in stock.
6. Type input.

v For the phonebook, type the following information:

 Last Name: LAST1

v For the dealership sample, verify that Car Make and VIN Number fields

contain the following information:

 Car Make: FORD

 VIN Number: V234567890123456789V

7. Click Submit.

If WebSphere Application Server for z/OS is configured properly, the output is

displayed.

v For the phonebook, the following information is displayed:

Result: Person found! FirstName: FIRST1 LastName: LAST1

Extension: 8-111-1111 ZipCode: D01/R01

v For the dealership sample, a message indicating that the query was

successful is displayed.

Running Your Applications on WebSphere Application Server for z/OS

This topic provides the high-level steps that are required to run an application that

accesses IMS DB from WebSphere Application Server for z/OS.

To run your application on WebSphere Application Server for z/OS:

1. Set the WebSphere Application Server for z/OS classpath to point to the IMS

Java metadata class.

2. Install the data source for the application as a J2C connection factory.

3. Install the application.

4. If you are using WebSphere Application Server V5 for z/OS, add the required

XML files to the application class path.

Detailed information about running an application on specific versions of

WebSphere Application Server for z/OS is available:

v “Running Your Applications on WebSphere Application Server V5 for z/OS” on

page 60

v “Running Your Applications on WebSphere Application Server V6 for z/OS” on

page 65

Running the IMS Java Sample Applications on WebSphere Application Server for z/OS

Chapter 3. WebSphere Application Server for z/OS Applications 59

|
|

|
|

|

|

Running Your Applications on WebSphere Application Server

V5 for z/OS

Prerequisite: “Running the IMS Java IVP on WebSphere Application Server for

z/OS” on page 44

To run your applications on WebSphere Application Server for z/OS:

1. “Setting the WebSphere Application Server V5 for z/OS Classpath”

2. “Installing the Data Source for Your Application on WebSphere Application

Server V5 for z/OS”

3. “Installing Your Application on WebSphere Application Server V5 for z/OS” on

page 61

4. “Adding the XML Files to the Application Classpath on WebSphere Application

Server V5 for z/OS” on page 62

5. “Enabling J2EE Tracing with WebSphere Application Server V5 for z/OS” on

page 63

Setting the WebSphere Application Server V5 for z/OS Classpath

Your application can include the IMS Java metadata class (DLIDatabaseView

subclass) or the metadata class can be stored elsewhere.

If your application does not include the metadata class, you must set the

WebSphere Application Server for z/OS classpath to the location of the IMS Java

metadata class that is used by the application.

One way to set the classpath is to add these files to the IMS JDBC resource adapter

classpath.

To add the required files to the IMS JDBC resource adapter classpath:

1. From the WebSphere Application Server for z/OS administrative console, click

Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

2. Click the name of the IMS JDBC resource adapter.

A configuration dialog is displayed.

3. In the Classpath field, add the path to the required files. Include the file name

for JAR files. Do not delete imsjava.jar.

4. Click OK.

Installing the Data Source for Your Application on WebSphere

Application Server V5 for z/OS

The DataSource facility is a factory for connections to a physical data source, or

database. A data source is registered with a naming service based on the Java

Naming and Directory (JNDI) API. DataSource objects have properties that pertain

to the actual data source that an application needs to access.

Requirement: You must use the DataSource facility, which replaces the

DriverManager facility, because the DriverManager facility is not

supported by the J2EE Connection Architecture Specification.

To install the data source for your application:

 1. In the left frame of the WebSphere Application Server for z/OS administrative

console, click Resources, and then click Resource Adapters.

Running Your Applications on WebSphere Application Server for z/OS

60 IMS Java Guide and Reference

|
|

|
|
|
|
|
|

|
|
|

|

|
|

A list of resource adapters is displayed.

 2. Click the name of the IMS JDBC resource adapter that you chose when you

installed the adapter.

A configuration dialog is displayed.

 3. Under Additional Properties, click J2C Connection Factories.

 4. Click New.

A configuration dialog is displayed.

 5. Type the following information:

 Name: name for the data source

 JNDI Name: path to the data source.
 6. Click OK.

The data source is listed in the J2C Connection Factories.

 7. Click the name of the data source that you installed in step 5.

 8. Under Additional Properties, click Custom Properties.

Six properties are listed in a table.

 9. In the DRAName row, click the dash symbol in the Value column.

10. In the Value field, type bytes 4-7 of the DRA startup table module name

(usually the IMS system ID). For more information about the DRA startup

table, see “Configuring WebSphere Application Server V6 for z/OS to Access

IMS” on page 42.

11. Click OK.

The properties table displays the DRA name that you just entered.

12. In the DatabaseViewName row, click the dash symbol in the Value column.

13. Optional: In the Value field, type the fully-qualified DLIDatabaseView subclass

name.

If you do set the subclass name, you must either create a data source for every

PSB an application accesses, or you must override the DLIDatabaseView

subclass name in the DataSource object by calling the setDatabaseView method

and providing the fully-qualified name of the subclass.

If you do not set the subclass name, you need to create a data source only for

each IMS. In the application, define the DLIDatabaseView subclass name in the

DataSource object by calling the setDatabaseView method and providing the

fully-qualified name of the subclass.

14. Click OK.

The properties table displays the host name that you just entered.

15. Optionally, set the trace level for the applications. See “Enabling J2EE Tracing

with WebSphere Application Server V5 for z/OS” on page 63.

16. Click Save.

The Save page is displayed.

17. Under Save to Master Configuration, click Save.

18. Restart the server to ensure that the changes have been made.

Next: “Installing Your Application on WebSphere Application Server V5 for z/OS”

Installing Your Application on WebSphere Application Server V5

for z/OS

Prerequisite: “Installing the Data Source for Your Application on WebSphere

Application Server V6 for z/OS” on page 65

Running Your Applications on WebSphere Application Server for z/OS

Chapter 3. WebSphere Application Server for z/OS Applications 61

|

|
|

|
|
|
|

|
|
|
|

|

This section describes how to deploy an application on WebSphere Application

Server for z/OS.

To install your application:

 1. From the WebSphere Application Server for z/OS administrative console, click

Applications, and then click Install New Application.

A dialog for installing a new application is displayed.

 2. Type the path to the EAR file.

 3. Click Next.

 4. Accept the defaults and click Next.

The Install New Application wizard is started. Step 1, ″Provide options to

perform the installation,″ is displayed.

 5. Clear the Create MBeans for Resources check box.

 6. Click Next.

Step 2, ″Provide JNDI Names for Beans,″ is displayed.

 7. In the JNDI Name field, type the path to the EJB home interface.

 8. Click Next.

Step 3, ″Map resource references to resources,″ is displayed.

 9. Type the JNDI name for the data source that you created in “Installing the

Data Source for Your Application on WebSphere Application Server V6 for

z/OS” on page 65.

10. Click Next.

Step 4, ″Map modules to application servers,″ is displayed.

11. Accept the defaults and click Next.

Step 5, ″Correct use of System Identity,″ is displayed.

12. Verify that no role is selected and click Next.

Step 6, ″Ensure all unprotected 2.0 methods have the correct level of

protection,″ is displayed.

13. Make any necessary changes and click Next.

The options that you specified are displayed in Step 7, ″Summary,″ of the

Install New Application wizard.

14. Verify that the options are correct, and then click Finish.

A message is displayed that indicates first that the application is being

installed, and then that the installation was successful.

15. Click Save to Master Configuration.

The Save page is displayed.

16. Under Save to Master Configuration, click Save.

17. Restart the server to ensure that the changes have been made.

Adding the XML Files to the Application Classpath on

WebSphere Application Server V5 for z/OS

If your application uses the storeXML() or retrieveXML() UDFs, you must add the

XML parser files to the application’s classpath.

Prerequisite: “Installing the IMS Java IVP on WebSphere Application Server V5 for

z/OS” on page 46

To add the XML files to the application classpath:

Running Your Applications on WebSphere Application Server for z/OS

62 IMS Java Guide and Reference

|

|
|
|
|

|
|

|

1. From the WebSphere Application Server for z/OS administrative console, click

Applications, and then click Enterprise Applications.

The application IMSJava IVP is listed.

 2. Click the name of your application.

 3. Under General Properties, in the Classloader Mode field, select

PARENT_LAST.

 4. Click Apply.

 5. Under Additional Properties, click Libraries.

 6. Click Add.

 7. In the Library Name field, select the shared library that you created in

“Adding the Required XML Files to the WebSphere Application Server V5 for

z/OS Classpath” on page 39. For example, select XML Shared Library.

 8. Click OK.

 9. Click Save.

The Save page is displayed.

10. Under Save to Master Configuration, click Save.

Next: “Testing the IMS Java IVP on WebSphere Application Server V5 for z/OS”

on page 48

Enabling J2EE Tracing with WebSphere Application Server V5 for

z/OS

You can trace the IMS library classes by using the WebSphere Application Server

for z/OS tracing service.

To enable tracing if you have not yet specified the level of tracing:

1. “Specifying the Level of Tracing”

2. “Specifying the Application Server and the Package to Trace” on page 64

To enable tracing if you have already specified the level of tracing:

1. “Specifying at Runtime the Application Server and the Package to Trace” on

page 64

You can also trace the IMS library classes or your applications using the

com.ibm.ims.base.XMLTrace class. The XMLTrace class is an IMS Java-provided class

that represents the trace as an XML document. You can trace different levels of the

code depending on the trace level. For more information, see the IMS Java API

Specification.

Specifying the Level of Tracing: To use the WebSphere Application Server for

z/OS tracing service, you must first specify the level of tracing.

To specify the level of tracing:

 1. In the left frame of the WebSphere Application Server for z/OS administrative

console, click Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

 2. Click IMS JDBC resource adapter.

A configuration dialog is displayed.

 3. Under Additional Properties, click J2C Connection Factories.

A list of connection factories is displayed.

Running Your Applications on WebSphere Application Server for z/OS

Chapter 3. WebSphere Application Server for z/OS Applications 63

|
|

|

|

|
|

|

|

|

|
|
|

|

|

|

|

|
|

|
|
|
|

|

|

|

|

|
|

|
|

4. Click the name of the J2C connection factory for which you want to enable

tracing.

A configuration dialog is displayed.

 5. Under Additional Properties, click Custom Properties.

Properties are listed in a table.

 6. In the Trace Level row, click the number in the Value column.

 7. In the Value field, type the trace level.

 8. Click OK.

The properties table displays the trace level that you just entered.

 9. Click Save.

The Save page is displayed.

10. Under Save to Master Configuration, click Save to ensure that the changes

are made.

Specifying the Application Server and the Package to Trace: After you specify

the level of tracing, specify the application server and package to trace and then

restart the server.

To specify the application server and the package to trace:

1. In the left frame of the WebSphere Application Server for z/OS administrative

console, click Servers, and then click Application Servers.

A list of application servers is displayed.

2. Click the name of the server on which you want to enable tracing.

3. Under Additional Properties, click Diagnostic Trace Service.

A configuration dialog for Diagnostic Trace Service is displayed.

4. Select the Enable Trace check box.

5. In the Trace Specification field after any other traces that are listed, type:

com.ibm.connector2.ims.db.*=all=enabled

6. Click Apply.

7. Click Save.

The Save page is displayed.

8. Under Save to Master Configuration, click Save to ensure that the changes are

made.

9. Restart the server.

Specifying at Runtime the Application Server and the Package to Trace: You can

turn tracing on and off by specifying at runtime the server and package to trace.

You do not need to restart your server each time.

To specify the application server and the package to trace at runtime:

1. In the left frame of the WebSphere Application Server for z/OS administrative

console, click Servers, and then click Application Servers.

A list of application servers is displayed.

2. Click the name of the server on which you want to enable tracing.

3. Under Additional Properties, click Diagnostic Trace Service.

A configuration dialog for Diagnostic Trace Service is displayed.

4. Click the Runtime tab.

5. In the Trace Specification field after any other traces that are listed, type:

com.ibm.connector2.ims.db.*=all=enabled

Running Your Applications on WebSphere Application Server for z/OS

64 IMS Java Guide and Reference

|
|
|

|

|

|
|
|

|

|
|

|

|

|

|

|

|
|

6. Click Apply.

Running Your Applications on WebSphere Application Server

V6 for z/OS

Prerequisite: “Running the IMS Java IVP on WebSphere Application Server for

z/OS” on page 44

To deploy your applications on WebSphere Application Server for z/OS:

1. “Setting the WebSphere Application Server V6 for z/OS Classpath”

2. “Installing the Data Source for Your Application on WebSphere Application

Server V6 for z/OS”

3. “Installing Your Application on WebSphere Application Server V6 for z/OS” on

page 67

4. “Enabling J2EE Tracing with WebSphere Application Server V6 for z/OS” on

page 67

Setting the WebSphere Application Server V6 for z/OS Classpath

Your application can include the IMS Java metadata class (DLIDatabaseView

subclass) or the metadata class can be stored elsewhere.

If your application does not include the metadata class, you must set the

WebSphere Application Server for z/OS classpath to the location of the IMS Java

metadata class that is used by the application.

One way to set the classpath is to add these files to the IMS JDBC resource adapter

classpath.

To add the required files to the IMS JDBC resource adapter classpath:

1. From the WebSphere Application Server for z/OS administrative console, click

Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

2. Click the name of the IMS JDBC resource adapter.

A configuration dialog is displayed.

3. In the Classpath field, add the path to the required files. Include the file name

for JAR files. Do not delete imsjava.jar.

4. Click OK.

5. In the messages box, click Save.

The save page is displayed.

6. Click Save to update the master repository with your changes.

Installing the Data Source for Your Application on WebSphere

Application Server V6 for z/OS

The DataSource facility is a factory for connections to a physical data source, or

database. A data source is registered with a naming service based on the Java

Naming and Directory (JNDI) API. DataSource objects have properties that pertain

to the actual data source that an application needs to access.

Requirement: You must use the DataSource facility, which replaces the

DriverManager facility, because the DriverManager facility is not

supported by the J2EE Connection Architecture Specification.

Running Your Applications on WebSphere Application Server for z/OS

Chapter 3. WebSphere Application Server for z/OS Applications 65

|

|
|

|

|

|

|
|
|
|
|
|

|
|
|

To install the data source for your application:

 1. In the left frame of the WebSphere Application Server for z/OS administrative

console, click Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

 2. Click the name of the IMS JDBC resource adapter that you chose when you

installed the adapter.

A configuration dialog is displayed.

 3. Under Additional Properties, click J2C connection factories.

 4. Click New.

A configuration dialog is displayed.

 5. Type the following information:

 Name: name for the data source

 JNDI Name: the JNDI name for the data source.
 6. Click OK.

The data source is listed in the J2C Connection Factories.

 7. Click the name of the data source that you installed in step 5.

 8. Under Additional Properties, click Custom Properties.

Three properties are listed in a table.

 9. Click DatabaseViewName.

A configuration dialog is displayed.

10. Optional: In the Value field, type the fully-qualified DLIDatabaseView subclass

name.

If you do set the subclass name, you must either create a data source for every

PSB an application accesses, or you must override the DLIDatabaseView

subclass name in the DataSource object that is within the application by

calling the setDatabaseView method and providing the fully-qualified name of

the subclass.

If you do not set the subclass name, you need to create a data source only for

each IMS. In the application, define the DLIDatabaseView subclass name in the

DataSource object by calling the setDatabaseView method and providing the

fully-qualified name of the subclass.

11. Click OK.

The properties table displays the DatabaseViewName value that you just

entered.

12. Click DRAName.

A configuration dialog is displayed.

13. In the Value field, type bytes 4-7 of the DRA startup table module name

(usually the IMS system ID). For more information about the DRA startup

table, see “Configuring WebSphere Application Server V6 for z/OS to Access

IMS” on page 42.

14. Click OK.

The properties table displays the DRA name that you just entered.

15. In the messages box, click Save.

The save page is displayed.

16. Click Save to update the master repository with your changes.

17. Restart the server in order for the custom service to take effect.

Next: “Installing Your Application on WebSphere Application Server V6 for z/OS”

on page 67

Running Your Applications on WebSphere Application Server for z/OS

66 IMS Java Guide and Reference

|

|
|

|

|

|

|

Installing Your Application on WebSphere Application Server V6

for z/OS

Prerequisite: “Installing the Data Source for Your Application on WebSphere

Application Server V6 for z/OS” on page 65

This section describes how to deploy an application on WebSphere Application

Server for z/OS.

To install your application:

 1. From the WebSphere Application Server for z/OS administrative console, click

Applications, and then click Install New Application.

A dialog for installing a new application is displayed.

 2. Type the path to the EAR file.

 3. Click Next.

 4. Accept the defaults and click Next.

The Install New Application wizard is started. Step 1, ″Provide options to

perform the installation,″ is displayed.

 5. Click Step 4: Provide JNDI Names for Beans.

 6. In the JNDI Name field, type the path to the EJB home interface.

 7. Click Step 7: Summary.

The options that you specified are displayed.

 8. Verify that the options are correct, and then click Finish.

A message is displayed that indicates first that the application is being

installed, and then that the installation was successful.

 9. Click Save to Master Configuration.

The Save page is displayed.

10. Under Save to Master Configuration, click Save.

Enabling J2EE Tracing with WebSphere Application Server V6 for

z/OS

You can trace the IMS library classes by using the WebSphere Application Server

for z/OS tracing service.

To enable tracing if you have not yet specified the level of tracing:

1. “Specifying the Level of Tracing”

2. “Specifying the Application Server and the Package to Trace” on page 68

To enable tracing if you have already specified the level of tracing:

1. “Specifying at Runtime the Application Server and the Package to Trace” on

page 68

You can also trace the IMS library classes or your applications using the

com.ibm.ims.base.XMLTrace class. The XMLTrace class is an IMS Java-provided class

that represents the trace as an XML document. You can trace different levels of the

code depending on the trace level. For more information, see the IMS Java API

Specification.

Specifying the Level of Tracing: To use the WebSphere Application Server for

z/OS tracing service, you must first specify the level of tracing.

To specify the level of tracing:

Running Your Applications on WebSphere Application Server for z/OS

Chapter 3. WebSphere Application Server for z/OS Applications 67

|
|
|
|

|

|

|

|

|
|

|
|

1. In the left frame of the WebSphere Application Server for z/OS administrative

console, click Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

 2. Click the name of the IMS JDBC resource adapter.

A configuration dialog is displayed.

 3. Under Additional Properties, click J2C connection factories.

A list of connection factories is displayed.

 4. Click the name of the J2C connection factory for which you want to enable

tracing.

A configuration dialog is displayed.

 5. Under Additional Properties, click Custom Properties.

Properties are listed in a table.

 6. Click TraceLevel row.

 7. In the Value field, type the trace level.

 8. Click OK.

The properties table displays the trace level that you just entered.

 9. In the messages box, click Save.

The save page is displayed.

10. Click Save to update the master repository with your changes.

Specifying the Application Server and the Package to Trace: After you specify

the level of tracing, specify the application server and package to trace and then

restart the server.

To specify the application server and the package to trace:

 1. In the left frame of the WebSphere Application Server for z/OS administrative

console, click Servers, and then click Application Servers.

A list of application servers is displayed.

 2. Click the name of the server on which you want to enable tracing.

 3. Under Troubleshooting, click Diagnostic Trace Service.

A configuration dialog for Diagnostic Trace Service is displayed.

 4. Select the Enable Log check box and click OK.

 5. Under Troubleshooting, click Change Log Detail Levels.

 6. Click the plus sign (+) next to com.ibm.connector2.

 7. Click com.ibm.connector2.ims.*

 8. From the list of trace detail levels, click all.

 9. Verify that com.ibm.connector2.ims.*=all appears in the text box and click

OK.

10. In the messages box, click Save.

The save page is displayed.

11. Click Save to update the master repository with your changes.

12. Restart the server.

Specifying at Runtime the Application Server and the Package to Trace: You can

turn tracing on and off by specifying at runtime the server and package to trace.

You do not need to restart your server each time.

To specify the application server and the package to trace at runtime:

Running Your Applications on WebSphere Application Server for z/OS

68 IMS Java Guide and Reference

|

|

|

|
|
|

|

|

|

|

|

|
|
|

|

1. In the left frame of the WebSphere Application Server for z/OS administrative

console, click Servers, and then click Application Servers.

A list of application servers is displayed.

2. Click the name of the server on which you want to enable tracing.

3. Under Troubleshooting, click Change Log Detail Levels.

A configuration dialog for Change Log Detail Levels is displayed.

4. Click the Runtime tab.

5. Click the plus sign (+) next to com.ibm.connector2.

6. Click com.ibm.connector2.ims.*

7. From the list of trace detail levels, click all.

8. Verify that com.ibm.connector2.ims.*=all appears in the text box and click

OK.

9. Click OK.

Developing Enterprise Applications that Access IMS DB

Enterprise applications that access IMS DB can be servlets or EJBs. The EJBs can be

bean-managed or container-managed. This topic describes the programming

models for these different types of enterprise applications. These programming

models apply to enterprise applications that run on either WebSphere Application

Server for z/OS or WebSphere Application Server on a non-z/OS platform.

In this topic:

v “Bean-Managed EJB Programming Model”

v “Container-Managed EJB Programming Model” on page 71

v “Servlet Programming Model” on page 71

v “Programming Requirements for WebSphere Application Server for z/OS” on

page 72

v “Deployment Descriptor Requirements for IMS Java” on page 72

Bean-Managed EJB Programming Model

In bean-managed EJBs, you programmatically define the transaction boundaries. To

define an EJB as bean-managed, set the transaction-type property, which is in the

ejb-jar.xml file of the EJB jar file, to Bean. You must manage the scope of the

transaction by using either the javax.transaction.UserTransaction or

java.sql.Connection interface. This topic describes how to use both interfaces:

v “Transaction Demarcation Using the javax.transaction.UserTransaction Interface”

v “Transaction Demarcation Using the java.sql.Connection Interface” on page 70

Transaction Demarcation Using the

javax.transaction.UserTransaction Interface

The programming model applies either to applications that run on WebSphere

Application Server on a non-z/OS platform or to applications that run on

WebSphere Application Server for z/OS. With the

javax.transaction.UserTransaction interface, you can define when the scope of

the transaction begins and ends, and when the transaction commits or rolls back.

The EJB container supplies the EJB with a javax.ejb.SessionContext object that

allows the javax.transaction.UserTransaction interface to perform the required

operations to manage the transaction.

Running Your Applications on WebSphere Application Server for z/OS

Chapter 3. WebSphere Application Server for z/OS Applications 69

|
|

|

|

|

|

|

|

|

|

|
|

|

|

|
|
|
|
|

|

|

|

|

|
|

|

|

|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|

try {

 // Use the javax.ejb.SessionContext set by the EJB container to instantiate

 // a new UserTransaction

 javax.transaction.UserTransaction userTransaction =

 sessionContext.getUserTransaction();

 // Begin the scope of this transaction

 userTransaction.begin();

 // Perform JNDI lookup to obtain the data source (the IVP datasource for

 // example) and cast

 javax.sql.DataSource dataSource = (javax.sql.DataSource)

 initialContext.lookup("java:comp/env/jdbc/IMSIVP");

 // Get a connection to the data source

 java.sql.Connection connection = dataSource.getConnection();

 // Create an SQL statement using the connection

 java.sql.Statement statement = connection.createStatement();

 // Acquire a result set by executing the query using the statement

 java.sql.ResultSet results = statement.executeQuery(...);

 // Commit and complete the scope of this transaction

 userTransaction.commit();

 // Close the connection

 connection.close();

} catch (Throwable t) {

 // If an exception occurs, roll back the transaction

 userTransaction.rollback();

 // Close the connection

 connection.close();

}

Transaction Demarcation Using the java.sql.Connection Interface

The programming model applies only to applications that run on WebSphere

Application Server on a non-z/OS platform and that use the remote database

services of IMS Java. With the java.sql.Connection interface, you commit or roll

back a transaction that is started by the creation of a data source connection. The

IMS Java EJB that is on the server side automatically starts a transaction if one

does not exist when a connection is created. You can then use this connection to

commit or rollback the transaction without using the

javax.transaction.UserTransaction interface.

Use this programming model only if you do not use the

javax.transaction.UserTransaction interface.

When you perform the JNDI lookup, specify "java:comp/env/sourceName" where

sourceName is the name of the data source.

try {

 // Perform JNDI lookup to obtain the data source (the IVP data source

 // for example) and cast

 javax.sql.DataSource dataSource = (javax.sql.DataSource)

 initialContext.lookup("java:comp/env/imsjavaRDSIVP");

 // Get a connection to the data source and begin the transaction scope

 java.sql.Connection connection = dataSource.getConnection();

 // Create an SQL statement using the connection

 java.sql.Statement statement = connection.createStatement();

Developing Enterprise Applications

70 IMS Java Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

// Acquire a result set by executing the query using the statement

 java.sql.ResultSet results = statement.executeQuery(...);

 // Commit and complete the scope of this transaction

 connection.commit();

 // Close the connection

 connection.close();

} catch (Throwable t) {

 // If an exception occurs, rollback the transaction

 connection.rollback();

 // Close the connection

 connection.close();

}

Container-Managed EJB Programming Model

In container-managed EJBs, the container manages the transaction demarcation.

The demarcation is defined in the ejb-jar.xml file of the EJB. To define an EJB as

container-managed, set the transaction-type property, which is in the ejb-jar.xml file

of the EJB jar file, to Container. Because the container manages the transaction

demarcation, this programming model does not have any transaction logic.

try {

 // Perform JNDI lookup to obtain the data source (the IVP data source

 // for example) and cast

 javax.sql.DataSource dataSource = (javax.sql.DataSource)

 initialContext.lookup("java:comp/env/jdbc/IMSIVP");

 // Get a connection to the data source

 java.sql.Connection connection = dataSource.getConnection();

 // Create an SQL statement using the connection

 java.sql.Statement statement = connection.createStatement();

 // Acquire a result set by executing the query using the statement

 java.sql.ResultSet results = statement.executeQuery(...);

 // Close the connection

 connection.close();

} catch (Throwable t) {

 // Close the connection

 connection.close();

}

Servlet Programming Model

Similarly to the bean-managed EJBs, the servlet programming model uses the

UserTransaction interface to begin, commit, or rollback the transaction. Because

the servlet resides outside of the EJB container and cannot use an EJBContext

object, the initial context requires an additional JNDI lookup to locate and

instantiate the UserTransaction interface.

try {

 // Establish an initial context to manage the environment

 //properties and JNDI names

 javax.naming.InitialContext initialContext = new InitialContext();

 // Locate and instantiate a UserTransaction object that is associated with

Developing Enterprise Applications

Chapter 3. WebSphere Application Server for z/OS Applications 71

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

// the initial context using JNDI

 javax.transaction.UserTransaction userTransaction = (UserTransaction)

 ic.lookup("java:comp/UserTransaction");

 // Begin the scope of this transaction

 userTransaction.begin();

 // Perform JNDI lookup to obtain the data source (the IVP data source

 // for example) and cast

 javax.sql.DataSource dataSource = (javax.sql.DataSource)

 initialContext.lookup("java:comp/env/jdbc/IMSIVP");

 // Get a connection to the datasource

 java.sql.Connection connection = dataSource.getConnection();

 // Create an SQL statement using the connection

 java.sql.Statement statement = connection.createStatement();

 // Acquire a result set by executing the query using the statement

 java.sql.ResultSet results = statement.executeQuery(...);

 // Commit and complete the scope of this transaction

 userTransaction.commit();

 // Close the connection

 connection.close();

} catch (Throwable t) {

 // If an exception occurs, roll back the transaction

 userTransaction.rollback();

 // Close the connection

 connection.close();

}

Programming Requirements for WebSphere Application Server

for z/OS

The following programming requirements apply to WebSphere Application Server

for z/OS EJBs that access IMS databases:

v IMS Java does not support component-managed signon.

v IMS Java does not support shared connections.

v The java.sql.Connection object must be acquired, used, and closed within a

transaction boundary.

v A global transaction must exist before you create a Connection object from a

JDBC connection. Either specify container-demarcated transactions in the EJB

deployment descriptor or explicitly begin a global transaction by calling

thejavax.transaction.UserTransaction API before creating a JDBC connection.

Deployment Descriptor Requirements for IMS Java

The deployment descriptor for an EJB or servlet has certain requirements for IMS

Java. In an EJB, the deployment descriptor is the file ejb-jar.xml. In a servlet, the

deployment descriptor is the file web.xml.

You must have a resource-ref element in the deployment descriptor. The

resource-ref element describes external resources. In the resource-ref element,

you must have the following elements:

 <res-type>javax.sql.DataSource</res-type>

 <res-sharing-scope>Unshareable</res-sharing-scope>

Developing Enterprise Applications

72 IMS Java Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

|

|
|

|
|
|
|

|

|
|
|

|
|
|

|
|

The <res-type>javax.sql.DataSource</res-type> element specifies the type of

data source. The <res-sharing-scope>Unshareable</res-sharing-scope> element

specifies that the connections are not shareable.

The following example is a resource-ref element from an EJB deployment

descriptor:

<resource-ref>

 <res-ref-name>jdbc/DealershipSample</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 <res-sharing-scope>Unshareable</res-sharing-scope>

</resource-ref>

Developing Enterprise Applications

Chapter 3. WebSphere Application Server for z/OS Applications 73

|
|
|

|
|

|
|
|
|
|
|

|

Developing Enterprise Applications

74 IMS Java Guide and Reference

Chapter 4. Remote Data Access with WebSphere Application

Server Applications

With IMS Java remote database services, you can develop and deploy applications

that run on non-z/OS platforms and access IMS databases remotely. Unlike other

Java solutions for IMS, you do not need to develop a z/OS application or access a

legacy z/OS application to have access to IMS data. Therefore, IMS Java is an ideal

solution for IMS application development in a WebSphere environment.

Figure 14 shows the components that are required for an enterprise application (in

this case, an EJB) on a non-z/OS platform to access IMS DB. The components are

described following the figure.

 The following components are used for an enterprise application on a non-z/OS

platform to access IMS DB:

non-z/OS platform

The operating system that WebSphere Application Server V5 runs on.

WebSphere Application Server

WebSphere Application Server on which the client application runs.

Figure 14. IMS Java and WebSphere Application Server Components

© Copyright IBM Corp. 2000, 2006 75

|
|
|

|
|

EJB The enterprise application (an EJB in this case) that contains your business

logic, and is deployed on WebSphere Application Server. This enterprise

application can be either container managed or bean managed. The

enterprise application can be transactional.

IMS distributed JDBC resource adapter

The resource adapter that is deployed on the non-z/OS platform. It

contains a type-3 JDBC driver.

IIOP (Internet Inter-ORB Protocol)

IIOP is the protocol that can be used between WebSphere Application

Server for z/OS and WebSphere Application Server running on another

platform. IIOP allows the servers to exchange data. Data is securely

transferred across the Internet using the SSL (Secure Sockets Layer)

protocol.

WebSphere Application Server for z/OS

WebSphere Application Server for z/OS is required to manage transaction

protocol and communication with RRS. It must reside on the same z/OS

LPAR (logical partition) as IMS.

IMS Java EJB

One of two IMS Java-supplied EJBs is the host-side component that

facilitates communication with and passes transaction information to the

IMS JDBC resource adapter. These EJBs act as listeners for remote requests.

Depending on whether there is a transaction context on the non-z/OS

platform, either a container-managed or bean-managed IMS Java EJB is

used.

IMS JDBC resource adapter

The IMS JDBC resource adapter that is deployed on the z/OS platform. It

contains a type-3 JDBC driver.

ODBA

Open Database Access is the IMS callable interface for access to IMS DB.

DRA The database resource adapter (DRA) is the bridge between the external

subsystem and IMS.

DL/I DL/I is the standard interface to IMS data.

 The following topics provide additional information:

v “Downloading IMS Java Files for Remote Database Services” on page 77

v “Configuring the Application Servers for IMS Java Remote Database Services”

on page 77

v “Running the IMS Java IVP for Remote Database Services” on page 84

v “Running the IMS Java Sample Applications for Remote Database Services” on

page 91

v “Running Your Application on WebSphere Application Server” on page 100

v “WebSphere Application Server EJBs” on page 108

Related Reading: Application programming for distributed enterprise applications

is the same as for z/OS enterprise applications. For information on developing

enterprise applications for either WebSphere Application Server for z/OS or

WebSphere Application Server on a non-z/OS platform, see “Developing

Enterprise Applications that Access IMS DB” on page 69.

Downloading IMS Java Files

76 IMS Java Guide and Reference

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

Downloading IMS Java Files for Remote Database Services

To use IMS Java remote database services to access IMS databases from

applications that run on WebSphere Application Server on a non-z/OS platform,

you must download IMS Java files from the IMS Java Web site. These files are

required in addition to the files that are installed as part of the SMP/E installation

of the IMS Java FMID.

To download the required IMS Java files, go to the IMS Web site at

http://www.ibm.com/ims and link to the IMS Java Web page for more

information.

Configuring the Application Servers for IMS Java Remote Database

Services

In addition to the software listed in “IMS Java System Requirements” on page 1,

the following software is required:

v WebSphere Application Server V5.0 for z/OS or later. If you have WebSphere

Application Server V5.0.2 for z/OS, you must install either V5.0.2.1 or APAR

PQ81944.

v Either:

– WebSphere Application Server V5.0.2.2 with cumulative fixes that include

PQ79485

– WebSphere Application Server V5.0.2.3 or later

The following protocols and z/OS components are required:

v RRS (resource recovery services) for z/OS

v RACF® or equivalent product

Before you can deploy an application on WebSphere Application Server, you must

configure the servers. This topic provides the basic steps required to configure the

servers.

To configure the servers for IMS Java remote database services:

1. Map the hostnames of the client and server.

2. Install the data source for IMS Java remote database services as a new J2C

connection factory on WebSphere Application Server for z/OS. The JNDI name

is rdsDataSource. Do not specify a database view name.

3. Install and start the IMS Java remote database services EAR file on WebSphere

Application Server for z/OS. The file is imsjavaRDS.ear, which is downloaded

from the IMS Java Web site.

4. If you are using WebSphere Application Server V5, add the following required

XML files to the server class path:

pathprefix/usr/lpp/ims/imsjava91/lib/xml-apis.jar

pathprefix/usr/lpp/ims/imsjava91/lib/xalan.jar

pathprefix/usr/lpp/ims/imsjava91/lib/xercesImpl.jar

5. Install the IMS distributed JDBC resource adapter on WebSphere Application

Server. The file name of the resource adapter is imsjavaRDS.rar.

Detailed steps, specific to the version of WebSphere Application Server, are also

provided:

v “Configuring the V5 Application Servers for IMS Java Remote Database

Services” on page 78

Downloading IMS Java Files

Chapter 4. Remote Data Access with WebSphere Application Server Applications 77

v “Configuring the V6 Application Servers for IMS Java Remote Database

Services” on page 81

Configuring the V5 Application Servers for IMS Java Remote

Database Services

Prerequisites:

v “Downloading IMS Java Files for Remote Database Services” on

page 77

v “Configuring WebSphere Application Server V5 for z/OS” on

page 39

v “Running the IMS Java IVP on WebSphere Application Server V5

for z/OS” on page 45

To configure the application servers for IMS Java remote database services:

1. “Mapping Hostnames for the Client and Server”

2. “Installing the Data Source on WebSphere Application Server V5 for z/OS”

3. “Installing the EAR file on WebSphere Application Server V5 for z/OS” on

page 79

4. “Adding the XML Files to the EAR Classpath” on page 80

5. “Installing the IMS Distributed JDBC Resource Adapter on WebSphere

Application Server V5” on page 81

Next: “Running the IMS Java IVP for Remote Database Services” on page 84

Mapping Hostnames for the Client and Server

Map the hostnames of the client and server so that they can communicate.

To map the hostnames for the client and server:

1. In the z/OS HFS environment, open the file named hosts.

2. In the hosts file, append the client IP address and client hostname. For

example:

129.42.17.99 IBMCLIENT

3. On the client, open the file named hosts.

4. In the hosts file, append the server IP address and server hostname. For

example:

204.146.213.73 IBMSERVER

Next: “Installing the Data Source on WebSphere Application Server V5 for z/OS”

Installing the Data Source on WebSphere Application Server V5

for z/OS

Unlike the data source for z/OS applications, this data source does not have values

for the IMS-specific properties. At runtime, the client application’s data source

properties will be propagated to an instance of this data source.

Prerequisite: “Mapping Hostnames for the Client and Server”

To install the data source on WebSphere Application Server for z/OS:

1. In the left frame of the WebSphere Application Server for z/OS administrative

console, click Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

Configuring the Application Servers for IMS Java Remote Database Services

78 IMS Java Guide and Reference

|
|
|

|
|

|

2. Click the name of IMS JDBC resource adapter that you chose when you

installed the adapter.

A configuration dialog, ″Preparing for the application installation,″ is displayed.

3. Under Additional Properties, click J2C Connection Factories.

4. Click New.

A configuration dialog is displayed.

5. Type the following information:

 Name: the name for the data source

 JNDI Name: rdsDataSource

6. Click OK.

The data source is listed in the J2C Connection Factories.

7. Click Save to Master Configuration.

The Save to Master Configuration dialog is displayed.

8. Click Save.

9. Restart the server.

Next: “Installing the EAR file on WebSphere Application Server V5 for z/OS”

Installing the EAR file on WebSphere Application Server V5 for

z/OS

The EAR file contains the two IMS Java-provided EJBs. These stateful session

beans act as server-side extensions of the IMS distributed JDBC resource adapter.

Prerequisite: “Installing the Data Source on WebSphere Application Server V5 for

z/OS” on page 78

To install the EAR file on WebSphere Application Server for z/OS:

 1. From the WebSphere Application Server for z/OS administrative console, click

Applications, and then click Install New Application.

A dialog for installing a new application is displayed.

 2. Type the path to the EAR file named imsjavaRDS.ear.

 3. Click Next.

A dialog,″ Preparing for application installation,″ is displayed.

 4. Accept the defaults and click Next.

The Install New Application wizard starts. Step 1, ″Provide options to perform

the installation,″ is displayed.

 5. Clear the Create MBeans for Resources check box.

 6. Click Next.

Step 2, ″Provide JNDI Names for Beans,″ is displayed.

 7. In the JNDI Name field, verify that the JNDI names are as follows:

v ejb/com/ibm/ims/rds/host/HostBeanManagedSessionHome

v ejb/com/ibm/ims/rds/host/HostContainerManagedSessionHome

 8. Click Next.

Step 3, ″Map resource references to resources,″ is displayed.

 9. Verify that the JNDI name of the resource reference for both EJBs of the IMS

Java Remote Database Services EJB module is rdsDataSource.

10. Click Next.

Step 4, ″Map modules to application servers,″ is displayed.

Configuring the Application Servers for IMS Java Remote Database Services

Chapter 4. Remote Data Access with WebSphere Application Server Applications 79

|

|

|
|

11. Accept the defaults and click Next.

Step 5, ″Correct use of System Identity,″ is displayed.

12. Verify that no role has been selected and click Next.

Step 6, ″Ensure all unprotected 2.0 methods have the correct level of

protection,″ is displayed.

13. Make any necessary changes and click Next.

The options that you specified are displayed in Step 7, ″Summary,″ of the

Install New Application wizard.

14. Verify that the options are correct, and then click Finish.

A message is displayed that indicates first that the imsjavaRDS application is

being installed, and then that the installation was successful.

15. Click Save to Master Configuration.

The Save page is displayed.

16. Under Save to Master Configuration, click Save.

17. Restart WebSphere Application Server for z/OS to ensure that changes to the

data source have been made and to start the IMS Java Remote Database

Services EJBs.

18. Click Save to update the master repository with your changes.

19. Click Applications, and then click Enterprise Application.

The application IMS Java Remote Database Services is listed with a red X,

which indicates that the application is stopped.

20. Select IMS Java Remote Database Services and click Start.

The application IMS Java Remote Database Services is listed with a green

arrow, which indicates that the application is started.

Next: “Adding the XML Files to the EAR Classpath”

Adding the XML Files to the EAR Classpath

If your application uses the storeXML() or retrieveXML() UDFs, you must add the

XML parser files to the server-side EJB’s classpath.

Prerequisite: “Installing the EAR file on WebSphere Application Server V5 for

z/OS” on page 79

To add the XML files to the EJB classpath:

 1. From the WebSphere Application Server administrative console, click

Applications, and then click Enterprise Applications.

The application IMSJava IVP is listed.

 2. Click imsjavaRDS.

 3. Under General Properties, in the Classloader Mode field, select

PARENT_LAST.

 4. Click Apply.

 5. Under Additional Properties, click Libraries.

 6. Click Add.

 7. In the Library Name field, select the shared library that you created in

“Adding the Required XML Files to the WebSphere Application Server V5 for

z/OS Classpath” on page 39. For example, select XML Shared Library.

 8. Click OK.

 9. Click Save.

Configuring the Application Servers for IMS Java Remote Database Services

80 IMS Java Guide and Reference

|
|
|

|

|
|

|
|
|

|
|

|

|
|

|

|

|
|

|

|

|

|
|
|

|

|

The Save page is displayed.

10. Under Save to Master Configuration, click Save.

Next: “Installing the IMS Distributed JDBC Resource Adapter on WebSphere

Application Server V5”

Installing the IMS Distributed JDBC Resource Adapter on

WebSphere Application Server V5

Before deploying applications, you must first set up WebSphere Application Server

on the non-z/OS client side by installing the IMS distributed JDBC resource

adapter.

The WebSphere Application Server on the client side requires only the IMS

distributed JDBC resource adapter, imsjavaRDS.rar.

Prerequisite: “Adding the XML Files to the EAR Classpath” on page 80

To install the IMS distributed JDBC resource adapter:

1. From the client-side WebSphere Application Server administrative console, click

Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

2. Click Install RAR.

A dialog for installing the resource adapter is displayed.

3. Type the path to the imsjavaRDS.rar file.

4. Click Next.

A configuration dialog is displayed.

5. Click OK.

The IMS distributed JDBC resource adapter is listed.

6. Click Save to Master Configuration.

The Save to Master Configuration dialog is displayed.

7. Click Save.

Configuring the V6 Application Servers for IMS Java Remote

Database Services

Prerequisites:

v “Downloading IMS Java Files for Remote Database Services” on

page 77

v “Configuring WebSphere Application Server V6 for z/OS” on

page 42

v “Running the IMS Java IVP on WebSphere Application Server V6

for z/OS” on page 48

To configure the application servers for IMS Java remote database services:

1. “Mapping Hostnames for the Client and Server” on page 82

2. “Installing the Data Source on WebSphere Application Server V6 for z/OS” on

page 82

3. “Installing the EAR file on WebSphere Application Server V6 for z/OS” on

page 83

Configuring the Application Servers for IMS Java Remote Database Services

Chapter 4. Remote Data Access with WebSphere Application Server Applications 81

|

|

|
|

4. “Installing the IMS Distributed JDBC Resource Adapter on WebSphere

Application Server V6” on page 83

Next: “Running the IMS Java IVP for Remote Database Services” on page 84

Mapping Hostnames for the Client and Server

Map the hostnames of the client and server so that they can communicate.

To map the hostnames for the client and server:

1. In the z/OS HFS environment, open the file named hosts.

2. In the hosts file, append the client IP address and client hostname. For

example:

129.42.17.99 IBMCLIENT

3. On the client, open the file named hosts.

4. In the hosts file, append the server IP address and server hostname. For

example:

204.146.213.73 IBMSERVER

Next: “Installing the Data Source on WebSphere Application Server V6 for z/OS”

Installing the Data Source on WebSphere Application Server V6

for z/OS

Unlike the data source for z/OS applications, this data source does not have values

for the IMS-specific properties. At runtime, the client application’s data source

properties will be propagated to an instance of this data source.

Requirement: You must use the DataSource facility, which replaces the

DriverManager facility, because the DriverManager facility is not

supported by the J2EE Connection Architecture Specification.

Prerequisite: “Mapping Hostnames for the Client and Server”

To install the data source for the IVP:

1. In the left frame of the WebSphere Application Server for z/OS administrative

console, click Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

2. Click the name of IMS JDBC resource adapter that you chose when you

installed the adapter.

A configuration dialog is displayed.

3. Under Additional Properties, click J2C connection factories.

4. Click New.

A configuration dialog is displayed.

5. Type the following information:

 Name: name for the data source

 JNDI Name: rdsDataSource

6. Click OK.

The data source is listed in the J2C Connection Factories.

7. In the messages box, click Save.

The save page is displayed.

8. Click Save to update the master repository with your changes.

Configuring the Application Servers for IMS Java Remote Database Services

82 IMS Java Guide and Reference

|
|
|

|
|
|

|

|

|

9. Restart the server.

Next: “Installing the IMS Java IVP on WebSphere Application Server V6 for z/OS”

on page 50

Installing the EAR file on WebSphere Application Server V6 for

z/OS

The EAR file contains the two IMS Java-provided EJBs. These stateful session

beans act as server-side extensions of the IMS distributed JDBC resource adapter.

Prerequisite: “Installing the Data Source on WebSphere Application Server V6 for

z/OS” on page 82

To install the IMS Java IVP:

 1. From the WebSphere Application Server for z/OS administrative console, click

Applications, and then click Install New Application.

A dialog for installing the application is displayed.

 2. Select Local file system and type the path to imsjavaRDS.ear.

 3. Click Next.

 4. Accept the defaults and click Next.

The Install New Application wizard is started.

 5. Click Step 7 to accept the installation defaults. Depending on your specific

server configuration, you might have to use the wizard to change some

default values.

 6. Verify that the options are correct, and then click Finish.

A message is displayed that indicates first that the application is being

installed, and then that the installation was successful.

 7. Click Save to Master Configuration.

The save page is displayed.

 8. Click Save to update the master repository with your changes.

 9. Click Applications, and then click Enterprise Application.

The application IMS Java Remote Database Services is listed with a red X,

which indicates that the application is stopped.

10. Select IMS Java Remote Database Services and click Start.

The application IMS Java Remote Database Services is listed with a green

arrow, which indicates that the application is started.

Next: “Testing the IMS Java IVP on WebSphere Application Server V6 for z/OS”

on page 50

Installing the IMS Distributed JDBC Resource Adapter on

WebSphere Application Server V6

Before deploying applications, you must first set up WebSphere Application Server

on the non-z/OS client side by installing the IMS distributed JDBC resource

adapter.

Prerequisite: “Installing the EAR file on WebSphere Application Server V6 for

z/OS”

To install the IMS distributed JDBC resource adapter:

1. From the WebSphere Application Server administrative console, click

Resources, and then click Resource Adapters.

Configuring the Application Servers for IMS Java Remote Database Services

Chapter 4. Remote Data Access with WebSphere Application Server Applications 83

|

|

|

|

|
|

A list of resource adapters is displayed.

2. Click Install RAR.

A dialog for installing the resource adapter is displayed.

3. Select Local path and type the path to the imsjavaRDS.rar file.

4. Click Next.

A configuration dialog is displayed.

5. Click OK.

The IMS distributed JDBC resource adapter is listed.

6. In the messages box, click Save.

The save page is displayed.

7. Click Save to update the master repository with your changes.

Running the IMS Java IVP for Remote Database Services

Run the IMS Java IVP for remote database services on WebSphere Application

Server to ensure that you have configured IMS and WebSphere Application Server

properly. This topic provides the high-level tasks required to run the IMS Java IVP.

To run the IMS Java IVP on WebSphere Application Server:

1. Set the WebSphere Application Server for z/OS classpath to the location of the

IMS Java metadata class, which is in the file samples.jar.

2. Install the data source of the IMS Java IVP as a new J2C connection factory on

WebSphere Application Server. The JNDI name is imsjavaRDSIVP. The database

view name is samples.ivp.DFSIVP37DatabaseView. Also specify the host name

and port.

3. Install and start the IMS Java IVP EAR file. The file is IMSJavaRDSIVP.ear.

4. Test the IVP. The URL is http://host_IP_address:port/IMSJavaRDSIVPWeb/
IMSJavaRDSIVP.html.

Detailed information about running the IMS Java IVP for remote database services

on specific versions of WebSphere Application Server is available:

v “Running the IMS Java IVP for Remote Database Services on WebSphere

Application Server V5”

v “Running the IMS Java IVP for Remote Database Services on WebSphere

Application Server V6” on page 88

Running the IMS Java IVP for Remote Database Services on

WebSphere Application Server V5

Prerequisite: “Configuring the Application Servers for IMS Java Remote Database

Services” on page 77

To run the IMS Java IVP for remote database services:

v “Setting the WebSphere Application Server V5 for z/OS Classpath” on page 85

v “Installing the Data Source for the IVP on the Client Side” on page 85

v “Installing the IVP on the Client Side” on page 86

v “Testing the IVP on WebSphere Application Server V5” on page 87

Next: “Running the IMS Java Sample Applications for Remote Database Services”

on page 91

Configuring the Application Servers for IMS Java Remote Database Services

84 IMS Java Guide and Reference

|

|

|

|

Setting the WebSphere Application Server V5 for z/OS Classpath

You must set the WebSphere Application Server for z/OS classpath to the location

of the IMS Java metadata class, which is in the file samples.jar.

One way to set the classpath is to add samples.jar to the IMS JDBC resource

adapter classpath.

To add the samples.jar file to the IMS JDBC resource adapter classpath:

1. From the WebSphere Application Server for z/OS administrative console, click

Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

2. Click the name of the IMS JDBC resource adapter.

A configuration dialog is displayed.

3. In the Classpath field, add pathprefix/usr/lpp/ims/imsjava91/samples/
samples.jar. Do not delete imsjava.jar.

4. Click OK.

5. Restart the server.

Installing the Data Source for the IVP on the Client Side

To install the data source on the client side:

 1. In the left frame of the client-side WebSphere Application Server

administrative console, click Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

 2. Click the IMS distributed JDBC resource adapter.

A configuration dialog is displayed.

 3. Under Additional Properties, click J2C Connection Factories.

 4. Click New.

A configuration dialog is displayed.

 5. Type the following information:

 Name: imsjavaRDSIVP

 JNDI Name: imsjavaRDSIVP

Note: To avoid messages J2CA0107I and J2CA0114W, both of which can be

ignored, set default values for component-managed authentication alias

and container-managed authentication alias.

 6. Click OK.

The data source is listed in the J2C Connection Factories.

 7. Click the name of the data source that you installed in step 5.

 8. Under Additional Properties, click Custom Properties.

Six properties are listed in a table.

 9. In the DRAName row, click the dash symbol in the Value column.

10. In the Value field, type bytes 4-7 of the DRA startup table module name

(usually the IMS system ID). For more information about the DRA startup

table, see “Configuring WebSphere Application Server V6 for z/OS to Access

IMS” on page 42.

11. Click OK.

The properties table displays the DRA name that you entered.

12. In the DatabaseViewName row, click the dash symbol in the Value column.

13. In the Value field, type: samples.ivp.DFSIVP37DatabaseView

Running the IMS Java IVP for Remote Database Services

Chapter 4. Remote Data Access with WebSphere Application Server Applications 85

|
|
|

|
|

|

|
|

|

|

|

|
|

|

|

|
|

|

14. In the HostName row, click the dash symbol in the Value column.

15. In the Value field, type the name or IP address of the server.

16. Click OK.

The properties table displays the host name that you entered.

17. In the PortNumber row, click the dash symbol in the Value column.

18. In the Value field, type the IIOP port number of the host machine’s server. For

example: 2809

19. Click OK.

The properties table displays the port number that you entered.

20. Optionally, set the trace level for the applications. See “Enabling J2EE Tracing

with WebSphere Application Server V5” on page 103.

21. Click Save.

The Save page is displayed.

22. Under Save to Master Configuration, click Save to ensure that the changes

are made.

Next: “Installing the IVP on the Client Side”

Installing the IVP on the Client Side

This topic describes how to deploy the IMS Java IVP for remote database services

application on WebSphere Application Server on a non-z/OS platform.

Prerequisite: “Installing the Data Source for the IVP on the Client Side” on page

88

To install the application:

 1. From the WebSphere Application Server administrative console, click

Applications, and then click Install New Application.

A dialog for installing a new application is displayed.

 2. Type the path to the EAR file: IMSJavaRDSIVP.ear.

 3. Click Next.

 4. Accept the defaults and click Next.

The Install New Application wizard starts. Step 1, ″Provide options to perform

the installation,″ is displayed.

 5. Clear the Create MBeans for Resources check box.

 6. Click Next.

Step 2, ″Provide JNDI Names for Beans,″ is displayed.

 7. In the JNDI Name fields, verify that the JNDI name is the path to the EJB

home interface.

v For the IVP, verify that the names are as follows:

– ejb/samples/ivp/rds/IMSJavaRDSIVPCMSessionHome

– ejb/samples/ivp/rds/IMSJavaRDSIVPBMSessionHome

 8. Click Next.

Step 3, ″Map resource references to resources,″ is displayed.

 9. Verify the JNDI name for the resource references.

v For the IVP, verify that the JNDI name of resource references of the two

EJBs within the IMSJavaRDS IVP EJB module are both imsjavaRDSIVP.
10. Accept the defaults and click Next.

Step 5, ″Map modules to application servers,″ is displayed.

Running the IMS Java IVP for Remote Database Services

86 IMS Java Guide and Reference

|

|
|

|

|

|

|

|
|

11. Accept the defaults and click Next.

Step 6, ″Ensure all unprotected 2.0 methods have the correct level of

protection,″ is displayed.

12. Make any necessary changes and click Next.

The options that you specified are displayed in Step 7, ″Summary,″ of the

Install New Application wizard.

13. Verify that the options are correct, and then click Finish.

A message is displayed that indicates first that the application is being

installed, and then that the installation was successful.

14. Click Save to Master Configuration.

The Save to Master Configuration dialog is displayed.

15. Click Save.

16. Restart the server to ensure that the changes have been made to the data

source and to start the IMS Java IVP enterprise application.

17. Click Applications, and then click Enterprise Application.

The application IMSJavaRDS IVP is listed with a red X, which indicates that

the application is stopped.

18. Select IMSJavaRDS IVP and click Start.

The application IMSJavaRDS IVP is listed with a green arrow, which indicates

that the application is started.

Next: “Testing the IVP on WebSphere Application Server V5”

Testing the IVP on WebSphere Application Server V5

This section describes how to test the IVP on WebSphere Application Server on a

non-z/OS platform. The IVP tests both a container-managed EJB and a

bean-managed EJB.

Prerequisite: “Installing the IVP on the Client Side” on page 86

To test the IVP:

1. Open a Web browser.

2. Type the Web address of the IVP:

http://host_IP_address:port/IMSJavaRDSIVPWeb/IMSJavaRDSIVP.html

An input Web page opens titled IMS Java IVP for Remote Database Services.

3. Select Container managed and then click Submit.

If WebSphere Application Server is configured properly, the following

information is displayed:

Result: IVP successful for the container managed EJB.

If WebSphere Application Server is not configured properly, the IVP displays an

exception and a stack trace.

4. Select Bean managed and then click Submit.

If WebSphere Application Server is configured properly, the following

information is displayed:

Result: IVP successful for the bean managed EJB.

If WebSphere Application Server is not configured properly, the IVP displays an

exception and a stack trace.

If you successfully run the IVP, IMS Java and WebSphere Application Server are

installed and configured properly.

Running the IMS Java IVP for Remote Database Services

Chapter 4. Remote Data Access with WebSphere Application Server Applications 87

|
|

|
|

Running the IMS Java IVP for Remote Database Services on

WebSphere Application Server V6

Prerequisite: “Configuring the Application Servers for IMS Java Remote Database

Services” on page 77

To run the IMS Java IVP for remote database services:

v “Setting the WebSphere Application Server V6 for z/OS Classpath”

v “Installing the Data Source for the IVP on the Client Side”

v “Installing the IVP on the Client Side” on page 89

v “Testing the IVP on WebSphere Application Server V6” on page 90

Next: “Running the IMS Java Sample Applications for Remote Database Services”

on page 91

Setting the WebSphere Application Server V6 for z/OS Classpath

You must set the WebSphere Application Server for z/OS classpath to the location

of the IMS Java metadata class, which is in the file samples.jar.

One way to set the classpath is to add samples.jar to the IMS JDBC resource

adapter classpath.

To add the samples.jar file to the IMS JDBC resource adapter classpath:

1. From the WebSphere Application Server for z/OS administrative console, click

Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

2. Click the name of the IMS JDBC resource adapter.

A configuration dialog is displayed.

3. In the Classpath field, add pathprefix/usr/lpp/ims/imsjava91/samples/
samples.jar. Do not delete imsjava.jar.

4. Click OK.

5. In the messages box, click Save.

The save page is displayed.

6. Click Save to update the master repository with your changes.

7. Restart the server.

Installing the Data Source for the IVP on the Client Side

To install the data source on the client side:

 1. In the left frame of the WebSphere Application Server administrative console,

click Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

 2. Click the name of IMS JDBC resource adapter that you chose when you

installed the adapter.

A configuration dialog is displayed.

 3. Under Additional Properties, click J2C connection factories.

 4. Click New.

A configuration dialog is displayed.

 5. Type the following information:

 Name: name for the data source

 JNDI Name: imsjavaRDSIVP

Running the IMS Java IVP for Remote Database Services

88 IMS Java Guide and Reference

|
|
|

|
|

|

|
|

|

|

|

|
|

|

|

|

|

|

6. Click OK.

The data source is listed in the J2C Connection Factories.

 7. Click the name of the data source that you installed in step 5.

 8. Under Additional Properties, click Custom properties.

Six properties are listed in a table.

 9. Click DatabaseViewName.

A configuration dialog is displayed.

10. In the Value field, type: samples.ivp.DFSIVP37DatabaseView

11. Click OK.

The properties table displays the DatabaseViewName value that you just

entered.

12. Click DRAName.

A configuration dialog is displayed.

13. In the Value field, type bytes 4-7 of the DRA startup table module name

(usually the IMS system ID). For more information about the DRA startup

table, see “Configuring WebSphere Application Server V6 for z/OS to Access

IMS” on page 42.

14. Click OK.

The properties table displays the DRA name that you just entered.

15. Click HostName.

A configuration dialog is displayed.

16. In the Value field, type the name of the host system.

17. Click OK.

The properties table displays the host name that you just entered.

18. Click PortNumber.

A configuration dialog is displayed.

19. In the Value field, type the port number of the host system.

20. Click OK.

The properties table displays the port number that you just entered.

21. In the messages box, click Save.

The save page is displayed.

22. Click Save to update the master repository with your changes.

23. Restart the server.

24. Click Applications, and then click Enterprise Application.

The application IMSJavaRDS IVP is listed with a red X, which indicates that

the application is stopped.

25. Select IMSJavaRDS IVP and click Start.

The application IMSJavaRDS IVP is listed with a green arrow, which indicates

that the application is started.

Next: “Installing the IMS Java IVP on WebSphere Application Server V6 for z/OS”

on page 50

Installing the IVP on the Client Side

This section describes how to deploy an application on WebSphere Application

Server on a non-z/OS platform.

Running the IMS Java IVP for Remote Database Services

Chapter 4. Remote Data Access with WebSphere Application Server Applications 89

|

|

|

|
|

Prerequisite: “Installing the Data Source for the IVP on the Client Side” on page

88

To install the IMS Java IVP:

 1. From the WebSphere Application Server administrative console, click

Applications, and then click Install New Application.

A dialog for installing the application is displayed.

 2. Select Local file system and type the path to IMSJavaRDSIVP.ear.

 3. Click Next.

 4. Accept the defaults and click Next.

The Install New Application wizard is started.

 5. Click Step 7 to accept the installation defaults. Depending on your specific

server configuration, you might have to use the wizard to change some

default values.

 6. Verify that the options are correct, and then click Finish.

A message is displayed that indicates first that the application is being

installed, and then that the installation was successful.

 7. Click Save to Master Configuration.

The save page is displayed.

 8. Click Save to update the master repository with your changes.

 9. Click Applications, and then click Enterprise Application.

The application IMSJavaRDS IVP is listed with a red X, which indicates that

the application is stopped.

10. Select IMSJavaRDS IVP and click Start.

The application IMSJavaRDS IVP is listed with a green arrow, which indicates

that the application is started.

Next: “Testing the IVP on WebSphere Application Server V6”

Testing the IVP on WebSphere Application Server V6

This section describes how to test the IVP on WebSphere Application Server on a

non-z/OS platform. The IVP tests both a container-managed EJB and a

bean-managed EJB.

Prerequisite: “Installing the IVP on the Client Side” on page 89

To test the IVP:

1. Open a Web browser.

2. Type the Web address of the IVP:

http://host_IP_address:port/IMSJavaRDSIVPWeb/IMSJavaRDSIVP.html

An input Web page opens titled IMS Java IVP for Remote Database Services.

3. Select Container managed and then click Submit.

If WebSphere Application Server is configured properly, the following

information is displayed:

Result: IVP successful for the container managed EJB.

If WebSphere Application Server is not configured properly, the IVP displays an

exception and a stack trace.

4. Select Bean managed and then click Submit.

If WebSphere Application Server is configured properly, the following

information is displayed:

Running the IMS Java IVP for Remote Database Services

90 IMS Java Guide and Reference

|

|

|

|

|
|

Result: IVP successful for the bean managed EJB.

If WebSphere Application Server is not configured properly, the IVP displays an

exception and a stack trace.

If you successfully run the IVP, IMS Java and WebSphere Application Server are

installed and configured properly.

Running the IMS Java Sample Applications for Remote Database

Services

This topic describes the high-level tasks that you must complete, along with the

IMS-specific information required, to run the IMS Java sample applications for

remote database services.

To run the IMS Java sample application on WebSphere Application Server:

1. Set the WebSphere Application Server for z/OS classpath to the location of the

IMS Java metadata class, which is in the file samples.jar.

2. Install the data source for the IMS Java sample application as a J2C connection

factory on WebSphere Application Server.

JNDI name:

v Phonebook sample: imsjavaPhonebook

v Dealership sample: jdbc/DealershipSample

Database view name:

v Phonebook sample: samples.ivp.DFSIVP37DatabaseView

v Dealership sample: samples.dealership.AUTPSB11DatabaseView

Also specify a host name and port number.

3. Install and start the IMS Java remote database services sample application EAR

file on WebSphere Application Server.

EAR file name:

v Phonebook sample: IMSJavaRDSPhonebook.ear

v Dealership sample: IMSJavaRDSDealership.ear
4. Test the sample application.

Sample application URL:

v Phonebook sample:

http://host_IP_address:port/IMSJavaRDSPhonebookWeb/IMSJavaRDSPhonebook.html

v Dealership sample:

http://host_IP_address:port/IMSJavaRDSDealershipWeb/IMSJavaRDSDealership.html

Sample input data:

v Phonebook sample:

 Last Name: LAST1

v Dealership sample:

 Car Make: FORD

 VIN Number: V234567890123456789V

Detailed information about running the IMS Java sample applications for remote

database services on specific versions of WebSphere Application Server is available:

v “Running the IMS Java Sample Applications on WebSphere Application Server

V5” on page 92

Running the IMS Java IVP for Remote Database Services

Chapter 4. Remote Data Access with WebSphere Application Server Applications 91

|

|

|

|

v “Running the IMS Java Sample Applications on WebSphere Application Server

V6” on page 96

Running the IMS Java Sample Applications on WebSphere

Application Server V5

Prerequisite: “Running the IMS Java IVP for Remote Database Services” on page

84

To run the IMS Java sample applications for remote database services:

1. “Setting the WebSphere Application Server V5 for z/OS Classpath”

2. “Installing the Data Source for the IMS Java Samples on the Client Side”

3. “Installing the IMS Java Sample Applications on the Client Side” on page 93

4. “Testing the Phonebook Sample on WebSphere Application Server V5” on page

95 or “Testing the Dealership Sample on WebSphere Application Server V5” on

page 95

Setting the WebSphere Application Server V5 for z/OS Classpath

You must set the WebSphere Application Server for z/OS classpath to the location

of the IMS Java metadata class, which is in the file samples.jar.

One way to set the classpath is to add samples.jar to the IMS JDBC resource

adapter classpath.

To add the samples.jar file to the IMS JDBC resource adapter classpath:

1. From the WebSphere Application Server for z/OS administrative console, click

Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

2. Click the name of the IMS JDBC resource adapter.

A configuration dialog is displayed.

3. In the Classpath field, add pathprefix/usr/lpp/ims/imsjava91/samples/
samples.jar. Do not delete imsjava.jar.

4. Click OK.

5. In the messages box, click Save.

The save page is displayed.

6. Click Save to update the master repository with your changes.

7. Restart the server.

Installing the Data Source for the IMS Java Samples on the

Client Side

To install the data source on the client side:

 1. In the left frame of the WebSphere Application Server administrative console,

click Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

 2. Click the IMS distributed JDBC resource adapter.

A configuration dialog is displayed.

 3. Under Additional Properties, click J2C Connection Factories.

 4. Click New.

A configuration dialog is displayed.

 5. Type the following information:

Running the IMS Java Sample Applications for Remote Database Services

92 IMS Java Guide and Reference

|
|
|

|
|

|

|
|

|

|

|

|
|

|

|

|

|

|

Name: name for the data source

– For the dealership sample, type: imsjavaRDSDealership

– For the phonebook sample, type: imsjavaRDSPhonebook
 JNDI Name: path to the data source

– For the dealership sample, type: imsjavaRDSDealership

– For the phonebook sample, type: imsjavaRDSPhonebook

Note: To avoid messages J2CA0107I and J2CA0114W, both of which can be

ignored, set default values for component-managed authentication alias

and container-managed authentication alias.

 6. Click OK.

The data source is listed in the J2C Connection Factories.

 7. Click the name of the data source that you installed in step 5.

 8. Under Additional Properties, click Custom Properties.

Six properties are listed in a table.

 9. In the DRAName row, click the dash symbol in the Value column.

10. In the Value field, type bytes 4-7 of the DRA startup table module name

(usually the IMS system ID). For more information about the DRA startup

table, see “Configuring WebSphere Application Server V6 for z/OS to Access

IMS” on page 42.

11. Click OK.

The properties table displays the DRA name that you entered.

12. In the DatabaseViewName row, click the dash symbol in the Value column.

13. In the Value field, type the fully-qualified DLIDatabaseView subclass name.

v For the phonebook sample, type: samples.ivp.DFSIVP37DatabaseView

v For the dealership sample, type: samples.dealership.AUTPSB11DatabaseView

14. In the HostName row, click the dash symbol in the Value column.

15. In the Value field, type the name or IP address of the host machine.

16. Click OK.

The properties table displays the host name that you entered.

17. In the PortNumber row, click the dash symbol in the Value column.

18. In the Value field, type the IIOP port number of the host machine’s server. For

example: 2809

19. Click OK.

The properties table displays the port number that you entered.

20. Optionally, set the trace level for the applications. See “Enabling J2EE Tracing

with WebSphere Application Server V5” on page 103.

21. Click Save.

The Save page is displayed.

22. Under Save to Master Configuration, click Save to ensure that the changes

are made.

Next: “Installing the IMS Java Sample Applications on the Client Side”

Installing the IMS Java Sample Applications on the Client Side

Prerequisite: “Installing the Data Source for the IMS Java Samples on the Client

Side” on page 92

Running the IMS Java Sample Applications for Remote Database Services

Chapter 4. Remote Data Access with WebSphere Application Server Applications 93

This section describes how to deploy an application on WebSphere Application

Server on a non-z/OS platform.

To install the application:

 1. From the WebSphere Application Server administrative console, click

Applications, and then click Install New Application.

A dialog for installing a new application is displayed.

 2. Type the path to the EAR file.

v For the phonebook sample, type the path to IMSJavaRDSPhonebook.ear.

v For the dealership sample, type the path to IMSJavaRDSDealership.ear.
 3. Click Next.

 4. Accept the defaults and click Next.

An application security warning is displayed. This warning indicates that the

phonebook or dealership sample will write trace files to the /tmp directory.

 5. Click Continue.

The Install New Application wizard starts. Step 1, ″Provide options to perform

the installation,″ is displayed.

 6. Clear the Create MBeans for Resources check box.

 7. Click Next.

Step 2, ″Provide JNDI Names for Beans,″ is displayed.

 8. In the JNDI Name fields, type the path to the EJB home interface.

v For the dealership sample, verify that the names are as follows:

ejb/samples/dealership/rds/IMSJavaRDSDealershipSessionHome

v For the phonebook sample, verify that the names are as follows:

– ejb/samples/phonebook/rds/IMSJavaRDSPBStatefulCMSessionHome

– ejb/samples/phonebook/rds/IMSJavaRDSPBStatefulBMTXSessionHome

– ejb/samples/phonebook/rds/IMSJavaRDSPBStatefulBMNoTXSessionHome

– ejb/samples/phonebook/rds/IMSJavaRDSPBStatelessCMSessionHome

 9. Click Next.

Step 3, ″Map resource references to resources,″ is displayed.

10. Verify the name of the JNDI name for the resource references.

v For the dealership sample, verify that the JNDI name of resource reference

of the IMSJavaRDS dSample EJB modules is imsjavaRDSDealership.

v For the phonebook sample, verify that the JNDI name of resource references

of the two EJBs within the IMSJavaRDS pbSample EJB modules are both

imsjavaRDSPhonebook.
11. Click Next.

Step 4, ″Map virtual hosts for web modules,″ is displayed.

12. Accept the defaults and click Next.

Step 6, ″Ensure all unprotected 2.0 methods have the correct level of

protection,″ is displayed.

13. Make any necessary changes and click Next.

The options that you specified are displayed in Step 7, ″Summary,″ of the

Install New Application wizard.

14. Verify that the options are correct, and then click Finish.

A message is displayed that indicates first that the application is being

installed, and then that the installation was successful.

Running the IMS Java Sample Applications for Remote Database Services

94 IMS Java Guide and Reference

|

|
|

|

|
|

|

|
|

|
|
|

|

|

15. Click Save to Master Configuration.

The Save to Master Configuration dialog is displayed.

16. Click Save.

17. Restart the server to ensure that the changes have been made to the data

source and to start the sample enterprise application.

18. Click Applications, and then click Enterprise Application.

The sample application is listed with a red X, which indicates that the

application is stopped.

19. Select the sample application and click Start.

The sample application is listed with a green arrow, which indicates that the

application is started.

Next: “Testing the Phonebook Sample on WebSphere Application Server V5” or

“Testing the Dealership Sample on WebSphere Application Server V5”

Testing the Phonebook Sample on WebSphere Application

Server V5

This section describes how to test the phonebook sample on WebSphere

Application Server on a non-z/OS platform.

Prerequisite: “Installing the IMS Java Sample Applications on the Client Side” on

page 93

To test the phonebook sample:

1. Open a Web browser.

2. Type the Web address of the phonebook sample:

http://host_IP_address:port/IMSJavaRDSPhonebookWeb/IMSJavaRDSPhonebook.html

An input Web page opens titled IMS Java Phonebook Sample for Remote

Database Services.

3. Select the type of EJB to test, such as Stateful, Container managed, and type the

following information:

 Last Name: LAST1

4. Select Display an entry and click Submit.

If WebSphere Application Server is configured properly, the following

information is displayed:

Person found! Last Name: LAST1

First Name: FIRST1

Extension: 8-111-1111 Zip code: D01/R01

5. Optionally, test other EJB types and commands.

Testing the Dealership Sample on WebSphere Application Server

V5

This section describes how to test the IMS Java dealership sample on WebSphere

Application Server on a non-z/OS platform.

Prerequisite: “Installing the IMS Java Sample Applications on the Client Side” on

page 93

To test the dealership sample:

1. Open a Web browser.

2. Type the Web address of the dealership sample:

Running the IMS Java Sample Applications for Remote Database Services

Chapter 4. Remote Data Access with WebSphere Application Server Applications 95

|
|

|
|

|
|

http://host_IP_address:port/IMSJavaRDSDealershipWeb/IMSJavaRDSDealership.html

An input Web page opens that is titled Find a car in stock.

3. Verify that Car Make and VIN Number fields contain the following

information:

Car Make: FORD

VIN Number: V234567890123456789V

4. Click Submit.

A message indicating that the query was successful is displayed.

5. Click on the query options on the left to test the applications. Submit the

queries with the default values or enter your own query values.

Running the IMS Java Sample Applications on WebSphere

Application Server V6

Prerequisite: “Running the IMS Java IVP for Remote Database Services” on page

84

To run the IMS Java sample applications for remote database services:

1. “Setting the WebSphere Application Server V6 for z/OS Classpath”

2. “Installing the Data Source for the IMS Java Samples on the Client Side”

3. “Installing the IMS Java Sample Applications on the Client Side” on page 98

4. “Testing the Phonebook Sample on WebSphere Application Server V6” on page

99 or “Testing the Dealership Sample on WebSphere Application Server V6” on

page 99

Setting the WebSphere Application Server V6 for z/OS Classpath

You must set the WebSphere Application Server for z/OS classpath to the location

of the IMS Java metadata class, which is in the file samples.jar.

One way to set the classpath is to add samples.jar to the IMS JDBC resource

adapter classpath.

To add the samples.jar file to the IMS JDBC resource adapter classpath:

1. From the WebSphere Application Server for z/OS administrative console, click

Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

2. Click the name of the IMS JDBC resource adapter.

A configuration dialog is displayed.

3. In the Classpath field, add pathprefix/usr/lpp/ims/imsjava91/samples/
samples.jar. Do not delete imsjava.jar.

4. Click OK.

5. In the messages box, click Save.

The save page is displayed.

6. Click Save to update the master repository with your changes.

7. Restart the server.

Installing the Data Source for the IMS Java Samples on the

Client Side

To install the data source on the client side for the IMS Java samples:

Running the IMS Java Sample Applications for Remote Database Services

96 IMS Java Guide and Reference

|

|
|

|
|

|

|

|
|
|

|
|

|

|
|

|

|

|

|
|

|

|

|

|

|

1. In the left frame of the WebSphere Application Server administrative console,

click Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

 2. Click the name of IMS JDBC resource adapter that you chose when you

installed the adapter.

A configuration dialog is displayed.

 3. Under Additional Properties, click J2C connection factories.

 4. Click New.

A configuration dialog is displayed.

 5. Type the following information:

 Name: name for the data source

 JNDI Name: path to the data source.

– For the phonebook sample, type: imsjavaRDSPhonebook

– For the dealership sample, type: imsjavaRDSDealership

 6. Click OK.

The data source is listed in the J2C Connection Factories.

 7. Click the name of the data source that you installed in step 5.

 8. Under Additional Properties, click Custom properties.

Six properties are listed in a table.

 9. Click DatabaseViewName.

A configuration dialog is displayed.

10. In the Value field, type the fully-qualified DLIDatabaseView subclass name.

v For the phonebook sample, type: samples.ivp.DFSIVP37DatabaseView

v For the dealership sample, type:samples.dealership.AUTPSB11DatabaseView
11. Click OK.

The properties table displays the DatabaseViewName value that you just

entered.

12. Click DRAName.

A configuration dialog is displayed.

13. In the Value field, type bytes 4-7 of the DRA startup table module name

(usually the IMS system ID). For more information about the DRA startup

table, see “Configuring WebSphere Application Server V6 for z/OS to Access

IMS” on page 42.

14. Click OK.

The properties table displays the DRA name that you just entered.

15. Click HostName.

A configuration dialog is displayed.

16. In the Value field, type the name of the host system.

17. Click OK.

The properties table displays the host name that you just entered.

18. Click PortNumber.

A configuration dialog is displayed.

19. In the Value field, type the port number of the host system.

20. Click OK.

The properties table displays the port number that you just entered.

21. In the messages box, click Save.

The save page is displayed.

Running the IMS Java Sample Applications for Remote Database Services

Chapter 4. Remote Data Access with WebSphere Application Server Applications 97

|

|

22. Click Save to update the master repository with your changes.

23. Restart the server.

Next: “Installing the IMS Java Sample Applications on the Client Side”

Installing the IMS Java Sample Applications on the Client Side

Prerequisite: “Installing the Data Source for the IMS Java Samples on the Client

Side” on page 96

This section describes how to deploy an application on WebSphere Application

Server on a non-z/OS platform.

To install the sample applications:

 1. From the WebSphere Application Server administrative console, click

Applications, and then click Install New Application.

A dialog for installing a new application is displayed.

 2. Select Local file system and type the path to the EAR file:

v For the phonebook sample, type the path to IMSJavaPhonebook.ear.

v For the dealership sample, type the path to imsjavaDealership.ear.
 3. Click Next.

 4. Accept the defaults and click Next.

Application security warnings are displayed.

 5. Click Continue.

The Install New Application wizard is started.

 6. Click Step 3.

Step 3, ″Provide JNDI Names for Beans,″ is displayed.

 7. In the JNDI Name field, type the path to the EJB home interface.

v For the phonebook sample, verify that the names are as follows:

– ejb/samples/phonebook/rds/IMSJavaRDSPBStatefulCMSessionHome

– ejb/samples/phonebook/rds/IMSJavaRDSPBStatefulBMTXSessionHome

– ejb/samples/phonebook/rds/IMSJavaRDSPBStatefulBMNoTXSessionHome

– ejb/samples/phonebook/rds/IMSJavaRDSPBStatelessCMSessionHome

v For the dealership sample, verify that the names are as follows:

ejb/samples/dealership/rds/IMSJavaRDSDealershipSessionHome

 8. Click Step 4.

Step 4, ″Map resource references to resources,″ is displayed.

 9. For the phonebook sample, verify that the JNDI name of resource references

of the IMSJavaRDS pbSample EJB module are both imsjavaRDSPhonebook.

For the dealership sample, verify that the JNDI name of resource references of

the IMSJavaRDS dSample EJB module is imsjavaRDSDealership.

10. Click Step 7.

If application resource warnings appear, verify that the resource assignments

are correct and click Continue.

11. On the summary page, verify that the options are correct, and then click

Finish.

A message is displayed that indicates first that the application is being

installed, and then that the installation was successful.

12. Click Save to Master Configuration.

Running the IMS Java Sample Applications for Remote Database Services

98 IMS Java Guide and Reference

|

|

|

|

The save page is displayed.

13. Click Save to update the master repository with your changes.

14. Click Applications, and then click Enterprise Application.

The sample application is listed with a red X, which indicates that the

application is stopped.

15. Select the sample application and click Start.

The sample application is listed with a green arrow, which indicates that the

application is started.

Next: “Testing the Phonebook Sample on WebSphere Application Server V6” or

“Testing the Dealership Sample on WebSphere Application Server V6”

Testing the Phonebook Sample on WebSphere Application

Server V6

This section describes how to test the phonebook sample on WebSphere

Application Server on a non-z/OS platform.

Prerequisite: “Installing the IMS Java Sample Applications on the Client Side” on

page 98

To test the phonebook sample:

1. Open a Web browser.

2. Type the Web address of the phonebook sample:

http://host_IP_address:port/IMSJavaRDSPhonebookWeb/IMSJavaRDSPhonebook.html

An input Web page opens titled IMS Java Phonebook Sample for Remote

Database Services.

3. Select the type of EJB to test, such as Stateful, Container managed, and type the

following information:

 Last Name: LAST1

4. Select Display an entry and click Submit.

If WebSphere Application Server is configured properly, the following

information is displayed:

Person found! Last Name: LAST1

First Name: FIRST1

Extension: 8-111-1111 Zip code: D01/R01

5. Optionally, test other EJB types and commands.

Testing the Dealership Sample on WebSphere Application Server

V6

This section describes how to test the IMS Java dealership sample on WebSphere

Application Server on a non-z/OS platform.

Prerequisite: “Installing the IMS Java Sample Applications on the Client Side” on

page 98

To test the dealership sample:

1. Open a Web browser.

2. Type the Web address of the dealership sample:

http://host_IP_address:port/IMSJavaRDSDealershipWeb/IMSJavaRDSDealership.html

An input Web page opens that is titled Find a car in stock.

Running the IMS Java Sample Applications for Remote Database Services

Chapter 4. Remote Data Access with WebSphere Application Server Applications 99

|

|
|

|
|

|

3. Verify that Car Make and VIN Number fields contain the following

information:

Car Make: FORD

VIN Number: V234567890123456789V

4. Click Submit.

A message indicating that the query was successful is displayed.

5. Click on the query options on the left to test the applications. Submit the

queries with the default values or enter your own query values.

Running Your Application on WebSphere Application Server

This topic provides the high-level steps that are required to run an application that

accesses IMS DB from WebSphere Application Server.

To run your application on WebSphere Application Server:

1. Set the WebSphere Application Server classpath to point to the IMS Java

metadata class.

2. Install the data source for the application as a J2C connection factory.

3. Install and start the application.

Detailed information about running an application on specific versions of

WebSphere Application Server is also provided:

v “Running Your Application on WebSphere Application Server V5”

v “Running Your Application on WebSphere Application Server V6” on page 104

Running Your Application on WebSphere Application Server

V5

Prerequisite: “Running the IMS Java IVP for Remote Database Services” on page

84

To deploy your own application:

v “Setting the WebSphere Application Server V5 for z/OS Classpath”

v “Installing the Data Source on the Client Side” on page 101

v “Installing the Application on the Client Side” on page 102

v “Adding the XML Files to the EAR Classpath” on page 80

Setting the WebSphere Application Server V5 for z/OS Classpath

You must set the WebSphere Application Server for z/OS classpath to the location

of the IMS Java metadata class (DLIDatabaseView subclass) that is used by the

application.

One way to set the classpath is to add these files to the IMS JDBC resource adapter

classpath.

To add the required files to the IMS JDBC resource adapter classpath:

1. From the WebSphere Application Server for z/OS administrative console, click

Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

2. Click the name of the IMS JDBC resource adapter.

A configuration dialog is displayed.

Running the IMS Java Sample Applications for Remote Database Services

100 IMS Java Guide and Reference

|
|

|
|

|

|

|

|

|
|
|
|

|
|

|

|
|

|

|

|

3. In the Classpath field, add the path to the required files. Include the file name

for JAR files. Do not delete imsjava.jar.

4. Click OK.

Installing the Data Source on the Client Side

To install the data source on the client side:

 1. In the left frame of the WebSphere Application Server administrative console,

click Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

 2. Click the IMS distributed JDBC resource adapter.

A configuration dialog is displayed.

 3. Under Additional Properties, click J2C Connection Factories.

 4. Click New.

A configuration dialog is displayed.

 5. Type the following information:

 Name: the name for the data source

 JNDI Name: the path to the data source

Note: To avoid messages J2CA0107I and J2CA0114W, both of which can be

ignored, set default values for component-managed authentication alias

and container-managed authentication alias.

 6. Click OK.

The data source is listed in the J2C Connection Factories.

 7. Click the name of the data source that you installed in step 5.

 8. Under Additional Properties, click Custom Properties.

Six properties are listed in a table.

 9. In the DRAName row, click the dash symbol in the Value column.

10. In the Value field, type bytes 4-7 of the DRA startup table module name

(usually the IMS system ID). For more information about the DRA startup

table, see “Configuring WebSphere Application Server V6 for z/OS to Access

IMS” on page 42.

11. Click OK.

The properties table displays the DRA name that you entered.

12. In the DatabaseViewName row, click the dash symbol in the Value column.

13. Optional: In the Value field, type the fully-qualified DLIDatabaseView subclass

name.

If you do set the subclass name, you must either create a data source for every

PSB an application accesses, or you must override the DLIDatabaseView

subclass name in the DataSource object by calling the setDatabaseView method

and providing the fully-qualified name of the subclass.

If you do not set the subclass name, you need to create a data source only for

each IMS. In the application, define the DLIDatabaseView subclass name in the

DataSource object by calling the setDatabaseView method and providing the

fully-qualified name of the subclass.

14. In the HostName row, click the dash symbol in the Value column.

15. In the Value field, type the name or IP address of the host machine.

16. Click OK.

The properties table displays the host name that you entered.

17. In the PortNumber row, click the dash symbol in the Value column.

Running Your Application on WebSphere Application Server

Chapter 4. Remote Data Access with WebSphere Application Server Applications 101

|
|

|

|
|

|
|
|
|

|
|
|
|

18. In the Value field, type the IIOP port number of the host machine’s server. For

example: 2809

19. Click OK.

The properties table displays the port number that you entered.

20. Optionally, set the trace level for the applications. See “Enabling J2EE Tracing

with WebSphere Application Server V5” on page 103.

21. Click Save.

The Save page is displayed.

22. Under Save to Master Configuration, click Save to ensure that the changes

are made.

Next: “Installing the Application on the Client Side” on page 106

Installing the Application on the Client Side

Prerequisite: “Installing the Data Source on the Client Side” on page 101

This section describes how to deploy an application on WebSphere Application

Server on a non-z/OS platform.

To install the application:

 1. From the WebSphere Application Server administrative console, click

Applications, and then click Install New Application.

A dialog for installing a new application is displayed.

 2. Type the path to the EAR file.

 3. Click Next.

 4. Accept the defaults and click Next.

The Install New Application wizard starts. Step 1, ″Provide options to perform

the installation,″ is displayed.

 5. Clear the Create MBeans for Resources check box.

 6. Click Next.

Step 2, ″Provide JNDI Names for Beans,″ is displayed.

 7. In the JNDI Name fields, type the path to the EJB home interface.

 8. Click Next.

Step 3, ″Map resource references to resources,″ is displayed.

 9. For the module that you want to install, type the JNDI name.

10. Click Next.

Step 4, ″Map virtual hosts for web modules,″ is displayed.

11. Accept the defaults and click Next.

Step 5, ″Map modules to application servers,″ is displayed.

12. Accept the defaults and click Next.

Step 6, ″Ensure all unprotected 2.0 methods have the correct level of

protection,″ is displayed.

13. Make any necessary changes and click Next.

The options that you specified are displayed in Step 7, ″Summary,″ of the

Install New Application wizard.

14. Verify that the options are correct, and then click Finish.

A message is displayed that indicates first that the application is being

installed, and then that the installation was successful.

Running Your Application on WebSphere Application Server

102 IMS Java Guide and Reference

15. Click Save to Master Configuration.

The Save to Master Configuration dialog is displayed.

16. Click Save.

17. Click Applications, and then click Enterprise Application.

The application is listed with a red X, which indicates that the application is

stopped.

18. Select the application and click Start.

The application is listed with a green arrow, which indicates that the

application is started.

Enabling J2EE Tracing with WebSphere Application Server V5

You can trace the IMS library classes by using the WebSphere Application Server

tracing service.

To enable tracing if you have not yet specified the level of tracing:

1. “Specifying the Level of Tracing”

2. “Specifying the Application Server and the Package to Trace”

To enable tracing if you have already specified the level of tracing:

1. “Specifying at Runtime the Application Server and the Package to Trace” on

page 104

Specifying the Level of Tracing: To use the WebSphere Application Server tracing

service, you must first specify the level of tracing.

To specify the level of tracing:

 1. In the left frame of the WebSphere Application Server administrative console,

click Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

 2. Click IMS distributed JDBC resource adapter.

A configuration dialog is displayed.

 3. Under Additional Properties, click J2C Connection Factories.

A list of connection factories is displayed.

 4. Click the name of the J2C connection factory for which you want to enable

tracing.

A configuration dialog is displayed.

 5. Under Additional Properties, click Custom Properties.

Properties are listed in a table.

 6. In the Trace Level row, click the number in the Value column.

 7. In the Value field, type the trace level.

 8. Click OK.

The properties table displays the trace level that you entered.

 9. Click Save.

The Save page is displayed.

10. Under Save to Master Configuration, click Save to ensure that the changes

are made.

Specifying the Application Server and the Package to Trace: After you specify

the level of tracing, specify the application server and package to trace and then

restart the server.

Running Your Application on WebSphere Application Server

Chapter 4. Remote Data Access with WebSphere Application Server Applications 103

|
|

|
|
|

|

|

|

|

|
|

|
|

|
|
|

To specify the application server and the package to trace:

 1. In the left frame of the WebSphere Application Server administrative console,

click Servers, and then click Application Servers.

A list of application servers is displayed.

 2. Click the name of the server on which you want to enable tracing.

 3. Under Additional Properties, click Diagnostic Trace Service.

A list of custom services is displayed.

 4. Click New.

A configuration dialog for Diagnostic Trace Service is displayed.

 5. Select the Enable Trace check box.

 6. In the Trace Specification field, add: com.ibm.ims.rds.*=all=enabled

 7. Click New.

 8. Click Save.

The Save page is displayed.

 9. Under Save to Master Configuration, click Save to ensure that the changes

are made.

10. Restart the server.

Specifying at Runtime the Application Server and the Package to Trace: You can

turn tracing on and off by specifying at runtime the server and package to trace.

You do not need to restart your server each time.

To specify the application server and the package to trace at runtime:

1. In the left frame of the WebSphere Application Server administrative console,

click Servers, and then click Application Servers.

A list of application servers is displayed.

2. Click the name of the server on which you want to enable tracing.

3. Under Additional Properties, click Diagnostic Trace Service.

A configuration dialog for Diagnostic Trace Service is displayed.

4. Click the Runtime tab.

5. In the Trace Specification field after any other traces that are listed, type:

com.ibm.ims.rds.*=all=enabled

6. Click Apply.

Running Your Application on WebSphere Application Server

V6

Prerequisite: “Running the IMS Java IVP for Remote Database Services” on page

84

To deploy your own application:

v “Setting the WebSphere Application Server V6 for z/OS Classpath” on page 105

v “Installing the Data Source on the Client Side” on page 105

v “Installing the Application on the Client Side” on page 106

v “Adding the XML Files to the EAR Classpath” on page 80

Running Your Application on WebSphere Application Server

104 IMS Java Guide and Reference

|
|
|

|

|
|

|

|

|

|

|

|
|

|

|

|

Setting the WebSphere Application Server V6 for z/OS Classpath

You must set the WebSphere Application Server for z/OS classpath to the location

of the IMS Java metadata class (DLIDatabaseView subclass) that is used by the

application.

One way to set the classpath is to add these files to the IMS JDBC resource adapter

classpath.

To add the required files to the IMS JDBC resource adapter classpath:

1. From the WebSphere Application Server for z/OS administrative console, click

Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

2. Click the name of the IMS JDBC resource adapter.

A configuration dialog is displayed.

3. In the Classpath field, add the path to the required files. Include the file name

for JAR files. Do not delete imsjava.jar.

4. Click OK.

Installing the Data Source on the Client Side

To install the data source for your application:

 1. In the left frame of the WebSphere Application Server for z/OS administrative

console, click Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

 2. Click the name of the IMS JDBC resource adapter that you chose when you

installed the adapter.

A configuration dialog is displayed.

 3. Under Additional Properties, click J2C connection factories.

 4. Click New.

A configuration dialog is displayed.

 5. Type the following information:

 Name: name for the data source

 JNDI Name: the JNDI name for the data source.
 6. Click OK.

The data source is listed in the J2C Connection Factories.

 7. Click the name of the data source that you installed in step 5.

 8. Under Additional Properties, click Custom Properties.

Six properties are listed in a table.

 9. Click DatabaseViewName.

A configuration dialog is displayed.

10. Optional: In the Value field, type the fully-qualified DLIDatabaseView subclass

name.

If you do set the subclass name, you must either create a data source for every

PSB an application accesses, or you must override the DLIDatabaseView

subclass name in the DataSource object that is within the application by

calling the setDatabaseView method and providing the fully-qualified name of

the subclass.

If you do not set the subclass name, you need to create a data source only for

each IMS. In the application, define the DLIDatabaseView subclass name in the

DataSource object by calling the setDatabaseView method and providing the

fully-qualified name of the subclass.

Running Your Application on WebSphere Application Server

Chapter 4. Remote Data Access with WebSphere Application Server Applications 105

|
|
|
|

|
|

|

|
|

|

|

|

|
|

|

|

|
|

|

11. Click OK.

The properties table displays the DatabaseViewName value that you just

entered.

12. Click DRAName.

A configuration dialog is displayed.

13. In the Value field, type bytes 4-7 of the DRA startup table module name

(usually the IMS system ID). For more information about the DRA startup

table, see “Configuring WebSphere Application Server V6 for z/OS to Access

IMS” on page 42.

14. Click OK.

The properties table displays the DRA name that you just entered.

15. Click HostName.

A configuration dialog is displayed.

16. In the Value field, type the name of the host system.

17. Click OK.

The properties table displays the host name that you just entered.

18. Click PortNumber.

A configuration dialog is displayed.

19. In the Value field, type the port number of the host system.

20. Click OK.

The properties table displays the port number that you just entered.

21. In the messages box, click Save.

The save page is displayed.

22. Click Save to update the master repository with your changes.

23. Click Applications, and then click Enterprise Application.

The application is listed with a red X, which indicates that the application is

stopped.

24. Select the application and click Start.

The application is listed with a green arrow, which indicates that the

application is started.

Next: “Installing the Application on the Client Side”

Installing the Application on the Client Side

Prerequisite: “Installing the Data Source on the Client Side” on page 105

This section describes how to deploy an application on WebSphere Application

Server on a non-z/OS platform.

To install your application:

 1. From the WebSphere Application Server for z/OS administrative console, click

Applications, and then click Install New Application.

A dialog for installing a new application is displayed.

 2. Type the path to the EAR file.

 3. Click Next.

 4. Accept the defaults and click Next.

The Install New Application wizard is started. Step 1, ″Provide options to

perform the installation,″ is displayed.

Running Your Application on WebSphere Application Server

106 IMS Java Guide and Reference

|

|

|

|
|

5. Click Step 4: Provide JNDI Names for Beans.

 6. In the JNDI Name field, type the path to the EJB home interface.

 7. Click Step 7: Summary.

The options that you specified are displayed.

 8. Verify that the options are correct, and then click Finish.

A message is displayed that indicates first that the application is being

installed, and then that the installation was successful.

 9. Click Save to Master Configuration.

The Save page is displayed.

10. Under Save to Master Configuration, click Save.

11. Restart the server to ensure that the changes have been made.

Enabling J2EE Tracing with WebSphere Application Server V6

You can trace the IMS library classes by using the WebSphere Application Server

tracing service.

To enable tracing if you have not yet specified the level of tracing:

1. “Specifying the Level of Tracing”

2. “Specifying the Application Server and the Package to Trace” on page 108

To enable tracing if you have already specified the level of tracing:

1. “Specifying at Runtime the Application Server and the Package to Trace” on

page 108

You can also trace the IMS library classes or your applications using the

com.ibm.ims.base.XMLTrace class. The XMLTrace class is an IMS Java-provided class

that represents the trace as an XML document. You can trace different levels of the

code depending on the trace level. For more information, see the IMS Java API

Specification.

Specifying the Level of Tracing: To use the WebSphere Application Server tracing

service, you must first specify the level of tracing.

To specify the level of tracing:

 1. In the left frame of the WebSphere Application Server administrative console,

click Resources, and then click Resource Adapters.

A list of resource adapters is displayed.

 2. Click the name of the IMS JDBC resource adapter.

A configuration dialog is displayed.

 3. Under Additional Properties, click J2C connection factories.

A list of connection factories is displayed.

 4. Click the name of the J2C connection factory for which you want to enable

tracing.

A configuration dialog is displayed.

 5. Under Additional Properties, click Custom Properties.

Properties are listed in a table.

 6. Click TraceLevel row.

 7. In the Value field, type the trace level.

 8. Click OK.

The properties table displays the trace level that you just entered.

Running Your Application on WebSphere Application Server

Chapter 4. Remote Data Access with WebSphere Application Server Applications 107

|

|
|
|

|

|

|

|

|
|

|
|

9. In the messages box, click Save.

The save page is displayed.

10. Click Save to update the master repository with your changes.

Specifying the Application Server and the Package to Trace: After you specify

the level of tracing, specify the application server and package to trace and then

restart the server.

To specify the application server and the package to trace:

 1. In the left frame of the WebSphere Application Server administrative console,

click Servers, and then click Application Servers.

A list of application servers is displayed.

 2. Click the name of the server on which you want to enable tracing.

 3. Under Troubleshooting, click Diagnostic Trace Service.

A configuration dialog for Diagnostic Trace Service is displayed.

 4. Select the Enable Log check box and click OK.

 5. Under Troubleshooting, click Change Log Detail Levels.

 6. Click the plus sign (+) next to com.ibm.ims.*.

 7. Click com.ibm.ims.rds.*

 8. From the list of trace detail levels, click all.

 9. Verify that com.ibm.ims.rds*=all appears in the text box and click OK.

10. In the messages box, click Save.

The save page is displayed.

11. Click Save to update the master repository with your changes.

12. Restart the server.

Specifying at Runtime the Application Server and the Package to Trace: You can

turn tracing on and off by specifying at runtime the server and package to trace.

You do not need to restart your server each time.

To specify the application server and the package to trace at runtime:

1. In the left frame of the WebSphere Application Server administrative console,

click Servers, and then click Application Servers.

A list of application servers is displayed.

2. Click the name of the server on which you want to enable tracing.

3. Under Troubleshooting, click Change Log Detail Levels.

A configuration dialog for Change Log Detail Levels is displayed.

4. Click the Runtime tab.

5. Click the plus sign (+) next to com.ibm.ims.rds.

6. Click com.ibm.ims.rds*

7. From the list of trace detail levels, click all.

8. Verify that com.ibm.ims.rds*=all appears in the text box and click OK.

9. Click OK.

WebSphere Application Server EJBs

When you design EJBs that access IMS, there are three IMS-specific considerations:

v Transaction semantics and how that affects commits and rollbacks (“Transaction

Semantics and Server-Side EJB Types” on page 109).

Running Your Application on WebSphere Application Server

108 IMS Java Guide and Reference

|

|

|

|
|
|

|

|

|

|

|

|
|
|

|

|
|

|

|

|

|

|

|

|

|

|

|

v Security semantics and how that affects security identity and application access

(“Client-Side EJB Security Semantics”).

v IMS Java JDBC implementation and how that affects SQL calls (Chapter 7,

“JDBC Access to IMS Data,” on page 127).

Restriction: The IMS distributed JDBC resource adapter does not support shared

connections.

Transaction Semantics and Server-Side EJB Types

There are two server-side EJB types: container managed and bean managed. These

EJBs act as listeners for distributed requests that come from the IMS distributed

JDBC resource adapter. The type of EJB that is created depends on whether there is

a transaction context when the client-side EJB makes the first SQL call.

Applications do not manage these EJBs because they are created and managed by

the IMS distributed JDBC resource adapter.

When a client-side EJB executes the first SQL request to a database, the IMS

distributed JDBC resource adapter checks to see if there is a transaction started. If

there is a transaction context, global transaction semantics are followed. However,

if there is no transaction context, then local transaction semantics are followed.

If there is a transaction context on the client side, the IMS distributed JDBC

resource adapter creates a container-managed EJB on the server side that joins the

existing transaction. Global transaction semantics are followed, meaning that if the

client-side application is container-managed, the container commits and rolls back

work, and if the client-side EJB is bean managed, the application commits and rolls

back work with the UserTransaction class. All work is committed and rolled back.

If there is no transaction context on the client side, the IMS distributed JDBC

resource adapter starts a bean-managed EJB on the server side, which starts a

transaction for each connection. Local transaction semantics are followed meaning

that the client application can commit and roll back individual connections using

the java.sql.Connection object.

Table 2 summarizes the relationship between the transaction context and the

transaction semantics.

 Table 2. Relationship between the Transaction Context and the Transaction Semantics

Transaction

Context?

Server-Side EJB

Transaction Type

Transaction

Semantics Transaction Boundary Delimiter

Yes Container managed Global EJB container or

javax.transaction.UserTransaction

No Bean managed Local java.sql.Connection

Related Reading: For more information about transaction contexts, see the Java

Transaction Service (JTA) Specification and the Java Transaction API (JTA) Specification.

Client-Side EJB Security Semantics

There are three areas to consider for client-side EJB security:

v Access to client-side EJB: Deploy the client-side EJB with the run-as deployment

property set to system. Restrict access to the client-side EJB. For information

about run-as options and other security issues, see the WebSphere Application

Server information center.

WebSphere Application Server EJBs

Chapter 4. Remote Data Access with WebSphere Application Server Applications 109

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

|

v Network security: You can use identity assertion or SSL to secure the network

communication between the two application servers.

v Security between WebSphere Application Server for z/OS and IMS: ODBA

requires a pre-verified ACEE (access control environment element), which

WebSphere Application Server for z/OS places on the execution thread.

WebSphere Application Server EJBs

110 IMS Java Guide and Reference

|
|

Chapter 5. DB2 UDB for z/OS Stored Procedures

You can write DB2 UDB for z/OS Java stored procedures that access IMS

databases.

To deploy a Java stored procedure on DB2 UDB for z/OS, you must configure IMS

Java, ODBA, and DRA.

Figure 15 shows a DB2 UDB for z/OS stored procedure using IMS Java, ODBA,

and DRA to access IMS databases.

 The following topics provide additional information:

v “Configuring DB2 UDB for z/OS for IMS Java”

v “Running the IMS Java IVP from DB2 UDB for z/OS” on page 113

v “Running the IMS Java Sample Application on DB2 UDB for z/OS” on page 115

v “Running Your Stored Procedure from DB2 UDB for z/OS” on page 117

v “Developing DB2 UDB for z/OS Stored Procedures that Access IMS DB” on

page 119

Configuring DB2 UDB for z/OS for IMS Java

Access to IMS databases from DB2 UDB for z/OS stored procedures requires IBM

DB2 Universal Database for z/OS and OS/390 Version 7 with APARs PQ46673 and

PQ50443. You also must have the DB2 for OS/390 and z/OS SQLJ/JDBC driver

with APAR PQ48383 installed or the DB2 Universal JDBC Driver.

Prerequisite: “Installing IMS Java” on page 2

To configure DB2 UDB for z/OS for IMS Java:

1. Create a data set with the following attributes. This data set is the JAVAENV

DD statement data set.

Figure 15. DB2 UDB for z/OS Stored Procedure Using IMS Java

© Copyright IBM Corp. 2000, 2006 111

v Organization: PS

v Record format: VB

v Record length: 1028

v Block size: 6144
2. In the data set that you created in step 1 on page 111, add the ENVAR keyword

with following parameters:

JAVA_HOME=

The HFS directory of the JVM.

DB2_HOME=

The HFS directory of the JDBC driver for DB2 UDB for z/OS.

CLASSPATH=

The HFS directories of the client application Java class files. You do not

specify the CLASSPATH= if you specify the client application Java class

files in the stored procedure definition.

LIBPATH=

The HFS directory of the file libJavTDLI.so.

TMSUFFIX=

The HFS directories of the IMS Java and XML class libraries:

TMPREFIX=pathprefix/usr/lpp/ims/imsjava91/imsjava.jar

:pathprefix/usr/lpp/ims/imsjava91/lib/xalan.jar

:pathprefix/usr/lpp/ims/imsjava91/lib/xml-apis.jar

:pathprefix/usr/lpp/ims/imsjava91/lib/xercesImpl.jar

Below is a sample JAVAENV data set that uses the _CEE_ENVFILE= parameter to

point to an HFS text file:

XPLINK(ON),ENVAR("JAVA_HOME=/JDK14/J1.4",

"_CEE_ENVFILE=/imsjava/tmp/ceeOptions_jdk14.txt")

Here is the accompany HFS text file:

 CLASSPATH=/imsjava/imstest.jar:/imsjava/junit.jar:/imsjava/samples.jar

 JCC_HOME=/JCC

 LIBPATH=/imsjava

 TMSUFFIX=/imsjava/imsjavaBase.jar:/imsjava/imsjavaTM.jar:/imsjava/imsJDB

 JVMPROPS=/imsjava/tmp/db2JvmProps.txt

Below is a sample JAVAENV data set that does not point to an HFS file.

XPLINK(ON),ENVAR("JAVA_HOME=/JDK14/J1.4,CLASSPATH=/imsjava/imstest.jar:

/imsjava/junit.jar:/imsjava/samples.jar,JCC_HOME=/JCC,LIBPATH=/imsjava,

TMSUFFIX=/imsjava/imsjavaBase.jar:/imsjava/imsjavaTM.jar:/imsjava/imsJDB,

JVMPROPS=/imsjava/tmp/db2JvmProps.txt")

Notes:

a. Use z/OS UNIX System Services to edit the db2JvmProps.txt file. For more

info about setting properties for z/OS UNIX System Services, consult the

DB2 UDB for z/OS Version 8 Application Programming Guide and Reference for

Java.

b. The total length for the ENVAR variable must be less than 256 characters.
3. Set DB2 UDB for z/OS environment variables in UNIX System Services by

issuing the following commands:

export SQLJ_HOME=location of DB2 SQLJ driver (for example /usr/lpp/db2/db2710)

export JDBC_HOME=location of DB2 JDBC driver (for example /usr/lpp/db2/db2710)

export JAVA_HOME=location of SDK1.3 (for example /usr/lpp/java/J1.3)

export DB2SQLJPROPERTIES=/path/db2sqljjdbc.properties (file created later)

Configuring DB2 UDB for z/OS

112 IMS Java Guide and Reference

|

|
|
|
|

|

export CLASSPATH=$JDBC_HOME/classes/db2jdbcclasses.zip

export CLASSPATH=$CLASSPATH:$SQLJ_HOME/classes/db2sqljruntime.zip

export CLASSPATH=$CLASSPATH:$SQLJ_HOME/classes/db2sqljclasses.zip

export CLASSPATH=$CLASSPATH:pathprefix/usr/lpp/ims/imsjava91/imsjava.jar

export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib:.

export LIBPATH=$SQLJ_HOME/lib:$JDBC_HOME/lib

export LIBPATH=:$JAVA_HOME/lib:$LIBPATH

export LD_LIBRARY_PATH=.:$SQLJ_HOME/bin:$JDBC_HOME/lib

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAVA_HOME/lib

export PATH=$SQLJ_HOME/bin:$PATH

export STEPLIB=yourDB2HLQ.DSNEXIT:yourDB2HLQ.SDSNLOAD:

export STEPLIB=yourDB2HLQ.SDSNLOD2:yourDB2HLQ.SDSNLINK:$STEPLIB

4. If you are using SDK 1.4.1, which does not have the required version of Xalan,

you must add the JVM environment variable java.endorsed.dirs and set it to

the location of the required XML files (for example,

java.endorsed.dirs=pathprefix/usr/lpp/ims/imsjava91/lib). IMS Java

requires Xalan-Java 2.6.0 or later (or equivalent code function).

Next: “Running the IMS Java IVP from DB2 UDB for z/OS”

Running the IMS Java IVP from DB2 UDB for z/OS

To verify that DB2 UDB for z/OS is configured correctly and that IMS Java is

installed correctly, run the IMS Java installation verification program (IVP) on DB2

UDB for z/OS.

The IMS Java IVP for DB2 UDB for z/OS is two programs:

v The Java application DB2IvpClient, which runs under UNIX System Services

v The stored procedure DB2IvpStoredProcedure, which runs in a WLM-managed

address space.

Prerequisites:

v “Configuring DB2 UDB for z/OS for IMS Java” on page 111

v Ensure that the standard IMS IVPs have been run. These IVPs

prepare the DBD for the IVP database, named IVPDB2, and load

the IVP database. They also prepare the IMS Java application PSB

(named DFSIVP37), build ACBs, and prepare other IMS control

blocks required by the IMS Java IVPs. For details of how to run

the IMS IVPs, see IMS Version 9: Installation Volume 1: Installation

Verification.

To run the IMS Java IVP on DB2 UDB for z/OS:

1. In the JAVAENV data set, modify the CLASSPATH= parameter to

pathprefix/usr/lpp/ims/imsjava91/samples.jar.

2. Edit the IMS-provided V71AWLM procedure as follows (if IMS.SDFSRESL does

not contain the DRA startup table, add that data set to the DFSRESLB DD

statement):

//V71AWLM PROC RGN=0M,APPLENV=,

// DB2SSN=,NUMTCB=

//* Define the V71AWLM procedure parameters here on in the service policy.

//IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,

// PARM=’&DB2SSN,&NUMTCB,&APPLENV’

//STEPLIB DD DISP=SHR,DSN=CEE.SCEERUN

Configuring DB2 UDB for z/OS

Chapter 5. DB2 UDB for z/OS Stored Procedures 113

|
|
|
|
|

//* DB2 Library

// DD DISP=SHR,DSN=yourDB2HLQ.SDSNLOAD

// DD DISP=SHR,DSN=yourDB2HLQ.SDSNLOD2

// DD DISP=SHR,DSN=yourDB2HLQ.RUNLIB.LOAD

//* DBRM library

// DD DISP=SHR,DSN=yourHLQ.SDSNDBRM

//DFSRESLB DD DISP=SHR,DSN=IMS.SDFSRESL

//JAVAENV DD DISP=SHR,DSN=data set with ENVAR settings

//JSPDEBUG DD SYSOUT=*

//CEEDUMP DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

3. Create a new service policy for WLM. You can define the V71AWLM procedure

parameters in the service policy or you can modify the procedure itself.

4. Define the procedure V71AWLM to RACF.

5. Start DB2 UDB for z/OS, the WLM-managed address space, and IMS DB.

6. Define the stored procedure to DB2 UDB for z/OS by running the following

job (Your_WLM_Environment_Name must match the APPLENV= parameter of

the V71AWLM procedure):

//CREATIVP JOB ,’name’,

// MSGCLASS=H,TIME=3,

// USER=SYSADM,PASSWORD=XXXXXXXX,

// MSGLEVEL=(1)

//CREATJSP EXEC PGM=IKJEFT01,DYNAMNBR=20

//STEPLIB DD DISP=SHR,DSN=DB2HLQ.DSNEXIT

// DD DISP=SHR,DSN=DB2HLQ.SDSNLOAD

// DD DISP=SHR,DSN=SYS2.IMS.SDFSRESL

// DD DISP=SHR,DSN=SYS2.IMS.SDFSJLIB

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

 DSN SYSTEM(DB2_Subsystem_Name)

 RUN PROGRAM(DSNTIAD) PLAN(DSNTIA71) -

 LIB(’DB2HLQ.RUNLIB.LOAD’) -

 PARM(’RC0’)

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSIN DD *

 CREATE PROCEDURE IVPStoredProc(VARCHAR (50) IN, VARCHAR(800) OUT)

 FENCED

 NO SQL

 LANGUAGE JAVA

 DYNAMIC RESULT SET 0

 EXTERNAL NAME ’samples.ivp.db2.DB2IVPStoredProcedure.execute’

 PARAMETER STYLE JAVA

 COLLID DSNJDBC

 WLM ENVIRONMENT Your_WLM_Environment_Name;

 GRANT EXECUTE ON PROCEDURE IVPStoredProc TO PUBLIC;

7. Create a DB2 plan that runs the client program by running the following job:

//BNDIVPCL JOB ,’YOUR NAME’,

// MSGCLASS=H,TIME=3,

// USER=SYSADM,PASSWORD=XXXXXXXX,

// MSGLEVEL=(1)

//BINDCLNT EXEC PGM=IKJEFT01,DYNAMNBR=20

//STEPLIB DD DISP=SHR,DSN=DB2HLQ.DSNEXIT

// DD DISP=SHR,DSN=DB2HLQ.SDSNLOAD

// DD DISP=SHR,DSN=SYS2.IMS.SDFSRESL

// DD DISP=SHR,DSN=SYS2.IMS.SDFSJLIB

//DBRMLIB DD DISP=SHR,DSN=DB2HLQ.SDSNDBRM

//SYSTSPRT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSTSIN DD *

IMS Java IVP for DB2 UDB for z/OS

114 IMS Java Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

DSN SYSTEM(DB2ID)

 BIND PACKAGE (DSNJDBC) MEMBER(DSNJDBC1) ISOLATION(UR) -

 ACTION(REPLACE) VALIDATE(BIND)

 BIND PACKAGE (DSNJDBC) MEMBER(DSNJDBC2) ISOLATION(CS) -

 ACTION(REPLACE) VALIDATE(BIND)

 BIND PACKAGE (DSNJDBC) MEMBER(DSNJDBC3) ISOLATION(RS) -

 ACTION(REPLACE) VALIDATE(BIND)

 BIND PACKAGE (DSNJDBC) MEMBER(DSNJDBC4) ISOLATION(RR) -

 ACTION(REPLACE) VALIDATE(BIND)

 BIND PLAN(DB2IVPCL) KEEPDYNAMIC(YES) ACTION(REPLACE) -

 PKLIST(DSNJDBC.DSNJDBC1, -

 DSNJDBC.DSNJDBC2, -

 DSNJDBC.DSNJDBC3, -

 DSNJDBC.DSNJDBC4)

 RUN PROGRAM(DSNTEP2) PLAN(DSNTEP71) -

 LIB(’DB2HLQ.RUNLIB.LOAD’)

END

//SYSIN DD *

GRANT EXECUTE ON PLAN DB2IVPCL TO PUBLIC;

/*

//

8. In UNIX System Services, in the directory that you specified by the export

DB2SQLJPROPERTIES command, create the file db2sqljjdbc.properties that contains

the following:

DB2SQLJSSID=yourDB2ID

DB2SQLJPLANNAME=DB2IVPCL

DB2SQLJATTACHTYPE=RRSAF

DB2SQLJDBRMLIB=DB2HLQ.SDSNDBRM

9. Run the client application by issuing following command from UNIX System

Services:

java samples.ivp.db2.DB2IvpClient IMSID

The IVP displays the results of the tests that it performs.

If the IVP was successful, it displays IVP PASSED.

If the IVP was not successful, it displays IVP FAILED or IVP INCOMPLETE.

Fix any errors and rerun the IVP.

Running the IMS Java Sample Application on DB2 UDB for z/OS

IMS Java provides a sample dealership application in addition to the IVP.

The IMS Java sample application for DB2 UDB for z/OS is two programs:

v The Java application DB2AutoClient, which runs under UNIX System Services

v The stored procedure DB2Auto, which runs in a WLM-managed address space.

Prerequisites:

v Appendix A, “Preparing to Run the Dealership Samples,” on page

167

v “Running the IMS Java IVP from DB2 UDB for z/OS” on page

113

To run the IMS Java sample dealership application:

1. Ensure that the DB2 UDB for z/OS environment is configured and running as

required by the IVP. If the DB2 UDB for z/OS environment is not configured

and running for the IVP, perform steps 1 through 5 in “Running the IMS Java

IVP from DB2 UDB for z/OS” on page 113 before continuing.

IMS Java IVP for DB2 UDB for z/OS

Chapter 5. DB2 UDB for z/OS Stored Procedures 115

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

2. Define the stored procedure to DB2 UDB for z/OS by running the following

job (Your_WLM_Environment_Name must match the APPLENV= parameter of

the V71AWLM procedure):

//CREATDLR JOB ,’name’,

// MSGCLASS=H,TIME=3,

// USER=SYSADM,PASSWORD=XXXXXXXX,

// MSGLEVEL=(1)

//CREATJSP EXEC PGM=IKJEFT01,DYNAMNBR=20

//STEPLIB DD DISP=SHR,DSN=DB2HLQ.DSNEXIT

// DD DISP=SHR,DSN=DB2HLQ.SDSNLOAD

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

 DSN SYSTEM(DB2_Subsystem_Name)

 RUN PROGRAM(DSNTIAD) PLAN(DSNTIA71) -

 LIB(’DB2HLQ.RUNLIB.LOAD’) -

 PARM(’RC0’)

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSIN DD *

 CREATE PROCEDURE AutoListModels(VARCHAR (100) IN,VARCHAR (100) OUT,

 VARCHAR (100) OUT,VARCHAR(100) OUT,

 VARCHAR (100) OUT,VARCHAR(100) OUT)

 FENCED

 NO SQL

 LANGUAGE JAVA

 DYNAMIC RESULT SET 0

 EXTERNAL NAME ’samples.dealership.db2.DB2Auto.listModels’

 PARAMETER STYLE JAVA

 COLLID DSNJDBC

 WLM ENVIRONMENT Your_WLM_Environment_Name;

 GRANT EXECUTE ON PROCEDURE AutoListModels TO PUBLIC;

3. Create a DB2 plan that runs the client program by running the following job:

//BNDDLRCL JOB ,’name’,

// MSGCLASS=H,TIME=3,

// USER=SYSADM,PASSWORD=XXXXXXXX,

// MSGLEVEL=(1)

//BINDCLNT EXEC PGM=IKJEFT01,DYNAMNBR=20

//STEPLIB DD DISP=SHR,DSN=DB2HLQ.DSNEXIT

// DD DISP=SHR,DSN=DB2HLQ.SDSNLOAD

//DBRMLIB DD DISP=SHR,DSN=DB2HLQ.SDSNDBRM

//SYSTSPRT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSTSIN DD *

 DSN SYSTEM(DB2ID)

 BIND PACKAGE (DSNJDBC) MEMBER(DSNJDBC1) ISOLATION(UR) -

 ACTION(REPLACE) VALIDATE(BIND)

 BIND PACKAGE (DSNJDBC) MEMBER(DSNJDBC2) ISOLATION(CS) -

 ACTION(REPLACE) VALIDATE(BIND)

 BIND PACKAGE (DSNJDBC) MEMBER(DSNJDBC3) ISOLATION(RS) -

 ACTION(REPLACE) VALIDATE(BIND)

 BIND PACKAGE (DSNJDBC) MEMBER(DSNJDBC4) ISOLATION(RR) -

 ACTION(REPLACE) VALIDATE(BIND)

 BIND PLAN(DB2DLRCL) KEEPDYNAMIC(YES) ACTION(REPLACE) -

 PKLIST(DSNJDBC.DSNJDBC1, -

 DSNJDBC.DSNJDBC2, -

 DSNJDBC.DSNJDBC3, -

 DSNJDBC.DSNJDBC4)

 RUN PROGRAM(DSNTEP2) PLAN(DSNTEP71) -

 LIB(’DB2HLQ.RUNLIB.LOAD’)

END

//SYSIN DD *

GRANT EXECUTE ON PLAN DB2DLRCL TO PUBLIC;

/*

//

Sample Application for DB2 UDB for z/OS

116 IMS Java Guide and Reference

|

4. In UNIX System Services, edit the file db2sqljjdbc.properties by changing the

DB2SQLJPLANNAME= parameter to DB2DLRCL:

DB2SQLJSSID=yourDB2ID

DB2SQLJPLANNAME=DB2DLRCL

DB2SQLJATTACHTYPE=RRSAF

DB2SQLJDBRMLIB=DB2HLQ.SDSNDBRM

5. Run the client application by issuing following command from UNIX System

Services:

java samples.dealership.db2.DB2AutoCLient IMSID

The sample application displays information about models of cars.

Running Your Stored Procedure from DB2 UDB for z/OS

Prerequisite: “Running the IMS Java IVP from DB2 UDB for z/OS” on page 113

To run your Java application that accesses IMS DB on DB2 UDB for z/OS:

1. In the JAVAENV data set, modify the CLASSPATH= parameter to point to your

application files. If your application files are in JAR files, include the JAR file

names. If the application files are not in JAR files, do not include the file

names.

2. Edit the IMS-provided V71AWLM procedure as follows (if IMS.SDFSRESL does

not contain the DRA startup table, add that data set to the DFSRESLB DD

statement):

//V71AWLM PROC RGN=0M,APPLENV=,

// DB2SSN=,NUMTCB=

//* Define the V71AWLM procedure parameters here on in the service policy.

//IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,

// PARM=’&DB2SSN,&NUMTCB,&APPLENV’

//STEPLIB DD DISP=SHR,DSN=CEE.SCEERUN

//* DB2 Library

// DD DISP=SHR,DSN=yourDB2HLQ.SDSNLOAD

// DD DISP=SHR,DSN=yourDB2HLQ.SDSNLOD2

// DD DISP=SHR,DSN=yourDB2HLQ.RUNLIB.LOAD

//* DBRM library

// DD DISP=SHR,DSN=yourHLQ.SDSNDBRM

//DFSRESLB DD DISP=SHR,DSN=IMS.SDFSRESL

//JAVAENV DD DISP=SHR,DSN=data set with ENVAR settings

//JSPDEBUG DD SYSOUT=*

//CEEDUMP DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

3. Create a new service policy for WLM. You can define the V71AWLM procedure

parameters in the service policy or you can modify the procedure itself.

4. Define the procedure V71AWLM to RACF.

5. Start DB2 UDB for z/OS, the WLM-managed address space, and IMS DB.

6. Define the stored procedure to DB2 UDB for z/OS by running the following

job (Your_WLM_Environment_Name must match the APPLENV= parameter of

the V71ALWM procedure):

//name JOB ,’name’,

// MSGCLASS=H,TIME=3,

// USER=user,PASSWORD=XXXXXXXX,

// MSGLEVEL=(1)

//CREATJSP EXEC PGM=IKJEFT01,DYNAMNBR=20

//STEPLIB DD DISP=SHR,DSN=DB2HLQ.DSNEXIT

// DD DISP=SHR,DSN=DB2HLQ.SDSNLOAD

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

 DSN SYSTEM(DB2_Subsystem_Name)

Sample Application for DB2 UDB for z/OS

Chapter 5. DB2 UDB for z/OS Stored Procedures 117

|
|

RUN PROGRAM(DSNTIAD) PLAN(DSNTIA71) -

 LIB(’DB2HLQ.RUNLIB.LOAD’) -

 PARM(’RC0’)

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSIN DD *

 CREATE PROCEDURE StoredProcName(... IN,... OUT)

 FENCED

 NO SQL

 LANGUAGE JAVA

 DYNAMIC RESULT SET 0

 EXTERNAL NAME ’package.StoredProcedure.targetMethod’

 PARAMETER STYLE JAVA

 COLLID DSNJDBC

 WLM ENVIRONMENT Your_WLM_Environment_Name;

 GRANT EXECUTE ON PROCEDURE StoredProcName TO PUBLIC;

7. Create a DB2 plan that runs the client program by running the following job:

//name JOB ,’name’,

// MSGCLASS=H,TIME=3,

// USER=user,PASSWORD=XXXXXXXX,

// MSGLEVEL=(1)

//BINDCLNT EXEC PGM=IKJEFT01,DYNAMNBR=20

//STEPLIB DD DISP=SHR,DSN=DB2HLQ.DSNEXIT

// DD DISP=SHR,DSN=DB2HLQ.SDSNLOAD

//DBRMLIB DD DISP=SHR,DSN=DB2HLQ.SDSNDBRM

//SYSTSPRT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSTSIN DD *

 DSN SYSTEM(DB2ID)

 BIND PACKAGE (DSNJDBC) MEMBER(DSNJDBC1) ISOLATION(UR) -

 ACTION(REPLACE) VALIDATE(BIND)

 BIND PACKAGE (DSNJDBC) MEMBER(DSNJDBC2) ISOLATION(CS) -

 ACTION(REPLACE) VALIDATE(BIND)

 BIND PACKAGE (DSNJDBC) MEMBER(DSNJDBC3) ISOLATION(RS) -

 ACTION(REPLACE) VALIDATE(BIND)

 BIND PACKAGE (DSNJDBC) MEMBER(DSNJDBC4) ISOLATION(RR) -

 ACTION(REPLACE) VALIDATE(BIND)

 BIND PLAN(plan_name) KEEPDYNAMIC(YES) ACTION(REPLACE) -

 PKLIST(DSNJDBC.DSNJDBC1, -

 DSNJDBC.DSNJDBC2, -

 DSNJDBC.DSNJDBC3, -

 DSNJDBC.DSNJDBC4)

 RUN PROGRAM(DSNTEP2) PLAN(DSNTEP71) -

 LIB(’DB2HLQ.RUNLIB.LOAD’)

END

//SYSIN DD *

GRANT EXECUTE ON PLAN plan_name TO PUBLIC;

/*

//

8. In UNIX System Services, in the directory that you specified by the export

DB2SQLJPROPERTIES command, create the file db2sqljjdbc.properties that contains

the following:

DB2SQLJSSID=yourDB2ID

DB2SQLJPLANNAME=plan_name

DB2SQLJATTACHTYPE=RRSAF

DB2SQLJDBRMLIB=DB2HLQ.SDSNDBRM

9. Run the client application.

Running Your Stored Procedure

118 IMS Java Guide and Reference

Developing DB2 UDB for z/OS Stored Procedures that Access IMS DB

The stored procedure must perform the following tasks in the order listed. An

example is given for each step:

1. Load the IMS JDBC driver:

Class.forName("com.ibm.ims.db.DLIDriver");

2. Create an IMS JDBC connection:

connection = DriverManager.getConnection

 ("jdbc:dli:package.DatabaseViewName/DRAname");

3. Create a statement:

Statement statement = connection.createStatement();

4. Query the IMS database:

ResultSet results = statement.executeQuery(query);

5. Move the results to the output parameters:

parmOut[...]=...;

6. Close the connection:

connection.close();

Developing Stored Procedures that Access IMS DB

Chapter 5. DB2 UDB for z/OS Stored Procedures 119

Developing Stored Procedures that Access IMS DB

120 IMS Java Guide and Reference

Chapter 6. CICS Applications

Java applications that run on CICS Transaction Server for z/OS can access IMS

databases by using IMS Java.

Java applications use the IMS Java class libraries to access IMS. Other than the IMS

Java layer, access to IMS from a Java application is the same as for a non-Java

application.

Figure 16 shows a JCICS application that is accessing an IMS database using ODBA

and IMS Java.

 The following topics provide additional information:

v “Configuring CICS for IMS Java”

v “Running the IMS Java IVP on CICS” on page 122

v “Running the IMS Java Sample Application on CICS” on page 124

v “Running Your Applications on CICS” on page 125

v “Developing CICS Applications that Access IMS DB” on page 125

Configuring CICS for IMS Java

To run Java applications that access IMS databases in a CICS environment, you

must have CICS Transaction Server for z/OS Version 2 or later installed.

Prerequisite: “Installing IMS Java” on page 2

To configure CICS for IMS Java:

1. Build the CICSPSB DLL:

a. Modify the Makefile, which is in the pathprefix/usr/lpp/ims/imsjava91/cics

directory, by changing both occurrences of your.pdse.loadlib to the data set

that will store the CICSPSB module.

b. Set the CICS library to the _CXX_LSYSLIB environment variable by issuing

the following command from the UNIX System Services prompt:

Figure 16. CICS Application Using IMS Java

© Copyright IBM Corp. 2000, 2006 121

export _CXX_LSYSLIB=CICS.SDFHLOAD:IMS.SDFSRESL:$_CXX_LSYSLIB

c. Run the Makefile by issuing the following command from the UNIX System

Services prompt:

make

In the data set that you specified in the Makefile, two data set members

named CICSPSB and DFSCLIB are created.

d. Add the data set that you specified in the Makefile to CICS STEPLIB

concatenation.
2. Modify the CICS environment member DFHJVMPR, which is the JVM profile:

a. Add a TMPREFIX variable, which adds libraries to the beginning of the

middleware path.

b. To the TMPREFIX variable, add the path to the IMS Java and XML class

libraries as follows:

TMPREFIX=pathprefix/usr/lpp/ims/imsjava91/imsjava.jar

:pathprefix/usr/lpp/ims/imsjava91/lib/xalan.jar

:pathprefix/usr/lpp/ims/imsjava91/lib/xml-apis.jar

:pathprefix/usr/lpp/ims/imsjava91/lib/xercesImpl.jar

c. Update the LIBPATH variable so that it contains the path to the file

libJavTDLI.so as follows:

LIBPATH=pathprefix/usr/lpp/ims/imsjava91

3. If you are using SDK 1.4.1, which does not have the required version of Xalan,

you must add the JVM environment variable java.endorsed.dirs and set it to

the location of the required XML files (for example,

java.endorsed.dirs=pathprefix/usr/lpp/ims/imsjava91/lib). IMS Java

requires Xalan-Java 2.6.0 or later (or equivalent code function).

Next: “Running the IMS Java IVP on CICS”

Related Reading: For detailed information about CICS system definition, see the

CICS Transaction Server for z/OS: CICS System Definition Guide.

Running the IMS Java IVP on CICS

After you configure CICS to run Java applications that access IMS databases, verify

that IMS Java is installed correctly and that CICS is configured correctly by

running the IMS Java installation verification program, which is named CICSIVP.

Prerequisites:

v “Configuring CICS for IMS Java” on page 121

v Ensure that the standard IMS IVPs have been run. These IVPs

prepare the DBD for the IVP database, named IVPDB2, and load

the IVP database. They also prepare the IMS Java application PSB

(named DFSIVP37), build ACBs, and prepare other IMS control

blocks required by the IMS Java IVPs. For details of how to run

the IMS IVP procedures, see IMS Version 9: Installation Volume 1:

Installation Verification.

To run the IMS Java IVP on CICS:

1. Create an HFS file named dfjjvmpr.props that contains the following class path:

ibm.jvm.shareable.application.class.path=

/pathprefix/usr/lpp/ims/imsjava91/samples.jar

Configuring CICS for IMS Java

122 IMS Java Guide and Reference

|

|
|

|
|
|
|
|

|
|

If you need to debug your application, you can also add the JVM debug

options in this file.

2. In the DFHJVMPR member of the DFHJVM data set, add:

JVMPROPS=path/dfjjvmpr.props

STDOUT=path

STDERR=path

3. Start IMS DB and CICS.

4. Turn off the uppercase translation feature of CICS by entering CEOT NOUCTRAN.

By default, everything you type on the CICS terminal is converted to

uppercase. However, the samples.jar file and path contain lowercase letters that

must remain in lowercase.

5. Define a program that can run the CICSIVP application (JVM class):

a. From the CICS terminal, enter: CEDA DEFINE PROGRAM

b. In the list of program attributes, type the following:

PROGram ==> cicsivp

Group ==> ivp

COncurrency ==> Threadsafe

JVM ==> Yes

JVMClass ==> samples.ivp.cics.CICSIVP

JVMProfile ==>DFSJVMPR

c. Press F3 to return to the main CICS terminal.
6. Define a transaction that can run the program:

a. From the CICS terminal, enter: CEDA DEFINE TRANSACTION

b. In the list of transaction attributes, type the following:

TRANSaction ==> civp

Group ==> ivp

PROGram ==> cicsivp

c. Press F3 to return to the main CICS terminal.
7. Install the program that you defined in step 5:

a. From the CICS terminal, enter: CEDA INSTALL

b. In the list of program attributes, type the following:

PROGram => cicsivp

Group => ivp

c. Press F3 to return to the main CICS terminal.
8. Install the transaction that you defined in step 6:

a. From the CICS terminal, enter: CEDA INSTALL

b. In the list of transaction attributes, type the following:

TRANSaction => civp

Group => ivp

c. Press F3 to return to the main CICS terminal.
9. Run the transaction by entering: civp

If the IVP was successful, it displays IVP PASSED.

If the IVP was not successful, it displays IVP FAILED or IVP INCOMPLETE.

See the STDOUT data set for the results of the individual tests that are

performed by the IVP.

Running the IMS Java IVP on CICS

Chapter 6. CICS Applications 123

|

|

|

|
|

Running the IMS Java Sample Application on CICS

IMS Java provides the dealership sample application to run on CICS. The

dealership sample files for CICS are located in pathprefix/usr/lpp/ims/imsjava91/
samples/dealership/cics.

Prerequisites:

v “Running the IMS Java IVP on CICS” on page 122

v Appendix A, “Preparing to Run the Dealership Samples,” on page

167

To run the IMS Java dealership sample on CICS:

1. Modify the HFS dfjjvmpr.props file to set the

ibm.jvm.shareable.application.class.path= parameter to the path of the

application. The location of the dfjjvmpr.props file is specified by the

JVMPROPS variable in the CICS JVM profile:

ibm.jvm.shareable.application.class.path=

/pathprefix/usr/lpp/ims/imsjava91/samples/samples.jar

2. Start IMS DB and CICS.

3. Turn off the uppercase translation feature of CICS by entering: CEOT NOUCTRAN

4. Define a program that can run the IMS Java sample application (JVM class):

a. From the CICS terminal, enter: CEDA DEFINE PROGRAM

b. In the list of program attributes, type the following:

PROGram ==> cicsauto

Group ==> imsj

COncurrency ==> Threadsafe

JVM ==> Yes

JVMClass ==> samples.ivp.cics.CICSAuto

JVMProfile ==> DFSJVMPR

c. Press F3 to return to the main CICS terminal.
5. Define a transaction that can run the program:

a. From the CICS terminal, enter: CEDA DEFINE TRANSACTION

b. In the list of transaction attributes, type the following:

TRANSaction ==> samp

Group ==> imsj

PROGram ==> cicsauto

c. Press F3 to return to the main CICS terminal.
6. Install the program that you defined in step 4:

a. From the CICS terminal, enter: CEDA INSTALL

b. In the list of program attributes, type the following:

PROGram => cicsauto

Group => imsj

c. Press F3 to return to the main CICS terminal.
7. Install the transaction that you defined in step 5:

a. From the CICS terminal, enter: CEDA INSTALL

b. In the list of transaction attributes, type the following:

TRANSaction => samp

Group => imsj

c. Press F3 to return to the main CICS terminal.
8. Run the transaction by entering: samp

The sample application displays information about models of cars.

IMS Java Sample Application on CICS

124 IMS Java Guide and Reference

|

|
|
|
|
|
|

|

|
|
|

|
|

|

Running Your Applications on CICS

Prerequisite: “Running the IMS Java IVP on CICS” on page 122

To run your Java application that accesses IMS DB from CICS:

1. Modify the HFS dfjjvmpr.props file to set the

ibm.jvm.shareable.application.class.path= parameter to the path of the

application. The location of the dfjjvmpr.props file is specified by the

JVMPROPS variable in the CICS JVM profile.

2. Start IMS DB and CICS.

3. Turn off the uppercase translation feature of CICS by entering: CEOT NOUCTRAN

4. Define a program that can run the Java application (JVM class).

5. Define a transaction that can run the program.

6. Install the program that you defined in step 4.

7. Install the transaction that you defined in step 5.

Developing CICS Applications that Access IMS DB

The following programming model outlines the supported structure for JCICS

applications that use IMS Java. The model is not complete, but it shows the normal

flow of the application for both the JDBC and SSA access methods.

In a CICS environment, only one PSB can be allocated at a time. Therefore, an

application can have only one active JDBC connection at a time. The application

must close the JDBC connection before it opens another JDBC connection.

public static void main(CommAreaHolder cah) { //Receives control

 conn = DriverManager.getConnection(...); //Establish DB connection

 repeat {

 results = statement.executeQuery(...); //Perform DB processing

 ...

 //send output to terminal

 }

 conn.close(); //Close DB connection

 return;

}

Running Your Applications on CICS

Chapter 6. CICS Applications 125

|

Developing CICS Applications

126 IMS Java Guide and Reference

Chapter 7. JDBC Access to IMS Data

JDBC is the SQL-based standard interface for data access in the Java 2 SDK

Standard Edition and Enterprise Edition. IMS Java’s implementation of JDBC

supports a selected subset of the full facilities of the JDBC 2.1 API.

IMS Java supports a subset of SQL keywords. Some keywords have specific IMS

usage requirements. For this usage information, see “Supported SQL Keywords”

on page 130.

Recommendation: Use JDBC to access IMS data instead of the IMS Java

hierarchical database interface.

This chapter uses the sample dealership applications that are shipped with IMS

Java to describe how to use JDBC to access an IMS database.

The following topics provide additional information:

v “Comparison of Hierarchical and Relational Databases”

v “Supported SQL Keywords” on page 130

v “Supported SQL Aggregate Functions” on page 138

v “SQL Extensions for XML Storage and Retrieval” on page 139

v “Supported JDBC Interfaces” on page 142

v “JDBC Prepared Statements for SQL” on page 144

v “Supported JDBC Data Types” on page 144

v “General Mappings from COBOL Copybook Types to IMS Java and Java Data

Types” on page 146

v “JDBC Recommendations for IMS Databases” on page 147

v “Java Metadata Classes for IMS Databases” on page 148

v “Sample Application that Uses JDBC” on page 150

Comparison of Hierarchical and Relational Databases

A database segment definition defines the fields for a set of segment instances

similar to the way a relational table defines columns for a set of rows in a table. In

this way, segments relate to relational tables, and fields in a segment relate to

columns in a relational table.

The name of an IMS segment becomes the table name in an SQL query, and the

name of a field becomes the column name in the SQL query.

A fundamental difference between segments in a hierarchical database and tables

in a relational database is that, in a hierarchical database, segments are implicitly

joined with each other. In a relational database, you explicitly join two tables. A

segment instance in a hierarchical database is already joined with its parent

segment and its child segments, which are all along the same hierarchical path. In

a relational database, this relationship between tables is captured by foreign and

primary keys.

This section compares the dealership sample database, which is shipped with IMS

Java, to a relational representation of the database.

© Copyright IBM Corp. 2000, 2006 127

|
|
|

|
|
|
|
|
|
|

The dealership sample database contains five segment types, which are shown in

Figure 17. The root segment is the Dealer segment. Under the Dealer segment is its

child segment, the Model segment. Under the Model segment are its children: the

segments Order, Sales, and Stock. See Figure 33 on page 148 for the database

description (DBD) of the dealership sample database.

 The Dealer segment identifies a dealer selling cars, and the segment contains a

dealer name and a unique dealer number in the fields DLRNAME and DLRNO.

Dealers carry car types, each of which has a corresponding Model segment. A

Model segment contains a type code in the field MODTYPE.

There is an Order segment for each car that is ordered for the dealership. A Stock

segment is created for each car that is available for sale in the dealer’s inventory.

When the car is sold, a Sales segment is created.

Figure 18 on page 129 shows a relational representation of the IMS database record

shown in Figure 17.

Important: This figure is only to help you understand how to use JDBC calls in a

hierarchical environment. IMS Java does not change the structure of

IMS data in any way.

Figure 17. Sample Dealership Database

Hierarchical and Relational Databases

128 IMS Java Guide and Reference

|
|

|
|

If a segment does not have a unique key, which is similar to a primary key in

relational databases, view the corresponding relational table as having a generated

primary key added to its column (field) list. An example of a generated primary

key is in the Model table (segment) of Figure 18. Similar to referential integrity in

relational databases, you cannot insert, for example, an Order (child) segment to

the database without it being a child of a specific Model (parent) segment.

Also note that the field (column) names have been renamed. You can rename

segments and fields to more meaningful names using the DLIModel utility.

An occurrence of a segment in a hierarchical database corresponds to a row (or

tuple) of a table in a relational database. Figure 19 on page 130 shows three

dealership database records. The Dealer segment occurrences have dependent

Model segment occurrences. The relational representation of these segment

occurrences is shown in Figure 20 on page 130.

Figure 18. Relational Representation of the Dealership Database

Hierarchical and Relational Databases

Chapter 7. JDBC Access to IMS Data 129

|
|
|
|
|
|

|
|
|
|
|

The following example shows the SELECT statement of an SQL call. Model is a

segment name that is used as a table name in the query:

SELECT * FROM Model

In the following example, ModelTypeCode is the name of a field contained in the

Model segment and it is used in the SQL query as a column name:

SELECT * FROM Model WHERE ModelTypeCode = ’062579’

In both of the preceding examples, Model and ModelTypeCode are alias names

that you assign by using the DLIModel utility. These names will likely not be the

same 8-character names used in the database description (DBD) for IMS. Alias

names act as references to the 8-character names that are described in the DBD.

Supported SQL Keywords

The following portable SQL keywords are currently supported by IMS Java.

IMS-specific usage for frequently-used keywords is described in this section. None

of the keywords is case-sensitive. These keywords are a subset of all SQL

keywords, which are listed in Appendix B, “SQL Keywords,” on page 171.

Figure 19. Segment Occurrences in the Dealership Database

Figure 20. Relational Representation of Segment Occurrences in the Dealership Database

Hierarchical and Relational Databases

130 IMS Java Guide and Reference

ALL

 AND

 AS

 ASC

 AVG

 COUNT

 DELETE

 DESC

 DISTINCT

 FROM

 GROUP BY

 INSERT

 INTO

 MAX

 MIN

 OR

 ORDER BY

 SELECT

 SET

 SUM

 UPDATE

 VALUES

 WHERE

Important: Because the IMS Java SQL parser supports portable SQL, you cannot

use any SQL keywords as Java aliases for PCBs, fields, or segments.

When you define Java aliases, do not use an SQL keyword. If a PCB,

segment, or field has the same name as an SQL keyword, you must

explicitly define a different Java alias for it. If you use an SQL keyword

as an alias for a PCB, segment, or field, your application will receive an

error when it attempts an SQL query. For a complete list of SQL

keywords, see Appendix B, “SQL Keywords,” on page 171.

The following topics provide additional usage information about SQL keywords:

v “SELECT Statement Usage”

v “INSERT Statement Usage” on page 135

v “DELETE Statement Usage” on page 135

v “UPDATE Statement Usage” on page 136

v “FROM Clause Usage” on page 136

v “WHERE Clause Usage” on page 137

SELECT Statement Usage

A SELECT statement is a query used as a top-level SQL statement. A SELECT

statement can be executed against a Statement or PreparedStatement object, which

returns the results as a ResultSet object.

Figure 21 on page 132 shows sample code that uses the results of a SELECT query

to update the modelOutput object with the model information. This example

requires an inputMessage object with the ModelTypeCode field information.

Supported SQL Keywords

Chapter 7. JDBC Access to IMS Data 131

|

|

Notice that the PCB reference name, DealershipDB, qualifies the Model segment

name in the query string. You qualify the segment name with the PCB name

because a PSB can contain multiple PCBs, and the PCBs can have segments with

the same name. When you use the PCB name to indicate the exact segment to

access, you avoid the ambiguity checking and improve the performance of your

application.

Note: The method trim() is used because IMS character fields are padded with

blanks if they are not long enough. The method trims off the extra blanks.

Figure 21 illustrates the use of a Statement object to execute an SQL query. You can

also use a PreparedStatement object to execute an SQL query. A PreparedStatement

object has two advantages over a Statement object:

v The SQL can be parsed one time for many executions of the query.

v You can build the query and use substitute values with each execution.

public boolean getModelDetails(InputMessage inputMessage,

 ModelOutput modelOutput) throws IMSException {

 // Parse the input message for ModelTypeCode

 String queryString = "SELECT * FROM DealershipDB.Model WHERE ModelTypeCode = "

 + "’" + inputMessage.getString("ModelTypeCode").trim() + "’";

 // Create a statement and execute it to get a ResultSet

 try {

 Statement statement = connection.createStatement();

 ResultSet results = statement.executeQuery(queryString);

 // Send back the result of the query

 // Note: because "ModelTypeCode" is unique - only 1 row

 // is returned

 if (results.next()) {

 modelOutput.setString("ModelTypeCode",

 results.getString("Type").trim());

 modelOutput.setString("Make",

 results.getString("CarMake").trim());

 modelOutput.setString("Model",

 results.getString("CarModel").trim());

 modelOutput.setString("Year",

 results.getString("CarYear"));

 modelOutput.setString("CityMiles",

 results.getString("EPACityMileage").trim());

 modelOutput.setString("HighwayMiles",results.getString

 ("EPAHighwayMileage").trim());

 modelOutput.setString("Price",

 results.getString("Price").trim());

 modelOutput.setString("Horsepower",

 results.getString("Horsepower").trim());

 return true;

 }

 else {

 reply("Unknown Type");

 return false;

 }

 }

 catch (SQLException e) {

 reply("Query Failed:"+ e.toString());

 return false;

 }

}

Figure 21. Example of SELECT Statement Query Results

Supported SQL Keywords

132 IMS Java Guide and Reference

|
|
|
|
|
|

|
|

Selecting Multiple Segments

By using IMS Java to write IMS applications, you can avoid the long process of

coding segment search arguments (SSAs) for every segment in the path that leads

to the segment being queried. Instead, you can use the IMS Java JDBC driver for

SQL queries to retrieve results from any segment in the path that leads to the

segment being queried.

The primary difference between SQL queries to relational databases and SQL

queries to IMS using IMS Java is that the hierarchical structure of an IMS database

eliminates the need for the join that is required for tables in relational databases.

For example, Figure 22 is a query to a relational database for the address of a

dealership that sells a particular car model (AnyCarModel):

In a relational database query, you must query two independent tables (Dealer and

Model) and indicate how they are joined using a WHERE clause. This query is not

valid against an IMS database.

In an IMS Java application, you can write the query in Figure 23 to access the same

data in a hierarchical database using a WHERE clause:

In a hierarchical database, all data in segments along the hierarchical path from the

root segment to the target segment are implicitly included in the query results, and

therefore they do not need to be explicitly stated. In Figure 23, the information

about the Dealer segment is included in the result set because it is along the

hierarchical path to the Model segment.

Requirement: This implicit inclusion of segments is called a path call. For a path

call to be made, the PROCOPT parameter in the PCB or SENSEG

statement of the PSB source must include ’P’. If P is not included in

the PROCOPT parameter and you issue a query that requires a path

call to be made, an SQLException object is generated.

Selecting All Fields in a Segment

You can select all fields in a segment by using the asterisk (*) operator in the

SELECT statement. In the following sample query, all of the fields from the Model

segment are retrieved.

SELECT *

FROM DealershipDB.Model

If you want all of the fields in more than one segment, use the asterisk operator

with the segments that you want to retrieve all the fields from. The SELECT

statement in Figure 24 on page 134 shows an example where all of the fields from

SELECT Dealer.Address

FROM DealershipDB.Dealer,DealershipDB.Model

WHERE Model.CarMake = ’AnyCarModel’

 AND Dealer.DealerName = Model.CarrierName

Figure 22. Sample Relational Database Query

SELECT Dealer.Address

FROM DealershipDB.Model

WHERE Model.CarMake = 'AnyCarModel’

Figure 23. Sample Hierarchical Database Query

Supported SQL Keywords

Chapter 7. JDBC Access to IMS Data 133

|
|
|
|
|

|
|
|

|
|

|
|
|

both the Dealer and Model segments are retrieved. Figure 25 shows an equivalent

query without using the asterisk operator.

Segment-Qualified Fields

SQL dictates that whenever a field is common between two tables in an SQL query,

the desired field must be table-qualified to resolve the ambiguity. Similarly,

whenever a field name is common in any two segments along a hierarchical path,

the field must be segment-qualified. For example, if a PCB has two segments,

segment ROOT and segment CHILD, and both possess a field named id, any

query that references the id field must be segment-qualified.

The following example is incorrect because the id field is not segment-qualified:

SELECT id

FROM PCBName.CHILD

WHERE id=’10’

The following example is correct because the id field is segment-qualified:

SELECT CHILD.id

FROM PCBName.CHILD

WHERE ROOT.id='10’

Recommendations:

v For performance reasons, always qualify fields by prefixing the field names with

a segment. This improves performance because IMS Java does not need to search

through all the segments to locate the field and check for ambiguity.

v Although you do not need to provide the PCB reference name on the query

unless the query is ambiguous without it, you should always provide the PCB

reference name to remove ambiguity and to eliminate the need for checking.

Retrieving XML Using the SELECT Statement

You can retrieve XML from an IMS database using the retrieveXML user-defined

function (UDF) in the SELECT statement. You can retrieve an intact XML

document or compose an XML document from standard IMS segments.

For example, the following SELECT statement returns the Model fields in XML:

SELECT retrieveXML(Model)

FROM DealershipDB.Model

Related Reading: For more information about the retrieveXML UDF, see “SQL

Extensions for XML Storage and Retrieval” on page 139.

Summary of SELECT Statement Usage

When using the SELECT statement in SQL calls to IMS databases:

v Qualify fields by prefixing them with segment names.

v Retrieve or create XML using the retrieveXML UDF.

SELECT Dealer.*,Model.*

FROM DealershipDB.Model

Figure 24. Simple Way to Select All Fields in a Segment

SELECT Dealer.DealerNo, Dealer.DealerCity, Dealer.Zip, Dealer.Phone,

 Model.ModelType, Model.Make, Model.Model, Model.Year, Model.MSRP, Model.Count

FROM DealershipDB.Model

Figure 25. Long Way to Select All Fields in a Segment

Supported SQL Keywords

134 IMS Java Guide and Reference

|
|

v Select fields that are in any segment from the root segment down to the segment

in the FROM clause.

INSERT Statement Usage

An INSERT statement inserts a segment instance with the specified data under any

number of parent segments that match the criteria specified in the WHERE clause.

All field names must be specified in the statement, unless you set a default value

in the IMS Java metadata class with the DLIModel utility control statements. For

more information about the DLIModel control statements, see the IMS Version 9:

Utilities Reference: System.

Figure 26 shows an example of an INSERT statement that inserts a segment

occurrence in the database using the DealershipDB PCB:

 You can set a default value for any field in a segment by using the FIELD control

statement when running the DLIModel utility. For more information, see the

description of the Default parameter of the DLIModel utility in IMS Version 9:

Utilities Reference: System.

One difference between JDBC queries to relational databases and to IMS is that

standard SQL does not have a WHERE clause in an INSERT statement because

tuples are being inserted into the table that is specified by the INTO keyword. In

an IMS database, you are actually inserting a new instance of the specified

segment, so you need to know where in the database this segment occurrence

should be placed. With an INSERT statement, the WHERE clause is always

necessary, unless you are inserting a root segment. With a prepared statement, the

list of values can include a question mark (?) as the value that can be substituted

before the statement is executed. For example:

INSERT INTO DealershipDB.Model(ModelTypeCode, CarMake, CarModel, CarYear, Price,

 EPACityMileage, EPAHighwayMileage, Horsepower)

VALUES (?,?,?,?,?,?,?,?)

WHERE Dealer.DealerNumber=?

DELETE Statement Usage

A DELETE statement can delete any number of segment occurrences that match

the criteria specified in the WHERE clause. A DELETE statement with a WHERE

clause also deletes the child segments of the matching segments. If no WHERE

clause is specified, all of the segment occurrences of that type are deleted as are all

of their child segment occurrences. Figure 27 shows an example of a DELETE

statement:

INSERT INTO DealershipDB.Sales (DateSold, PurchaserLastName,

 PurchaserFirstName, PurchaserAddress, SoldBy, StockVINNumber)

VALUES (’07032000’, ’Beier’, ’Otto’, ’101 W. 1st Street’,

 ’Springfield, OH’, ’S123’, ’1ABCD23E4G5678901234’)

WHERE Dealer.DealerNumber = ’A123’

AND Model.ModelTypeCode = ’K1’

Figure 26. Sample INSERT Statement

DELETE FROM DealershipDB.Order

WHERE Dealer.DealerNumber = ’123’ AND OrderNumber = ’345’

Figure 27. Sample DELETE Statement

Supported SQL Keywords

Chapter 7. JDBC Access to IMS Data 135

|
|
|
|
|
|

|
|

UPDATE Statement Usage

An UPDATE statement modifies the value of the fields in any number of segment

occurrences.

An UPDATE statement applies its SET operation to each instance of a specified

segment with matching criteria in the WHERE clause. If the UPDATE statement

does not have a WHERE clause, the SET operation is applied to all instances of the

specified segment.

A SET clause contains at least one assignment. In each assignment, the values to

the right of the equal sign are computed and assigned to columns to the left of the

equal sign. For example, the UPDATE statement in Figure 28 is called to accept an

order. When a customer accepts an order, the Order segment’s SerialNo and

DeliverDate fields are updated.

FROM Clause Usage

A FROM clause in IMS Java differs from standard SQL in that explicit joins are not

required or allowed. Instead, the lowest-level segment in the query (in the SELECT

statement and WHERE clause) must be the only segment that is listed in the

FROM clause. The lowest-level segment in the FROM clause is equivalent to a join

of all the segments, starting with the one that is listed in the FROM clause up the

hierarchy to the root segment. For example, the FROM clause FROM

DealershipDB.Order is equivalent to the following FROM clause in a relational

query:

FROM DealershipDB.Order,DealershipDB.Model,DealershipDB.Dealer

PCB-Qualified SQL Queries

In IMS Java, connections are made to PSBs. Because there are multiple database

PCBs in a PSB, there must be a way to specify which PCB (using its alias) in a PSB

to use when executing an SQL query on the java.sql.Connection object. To specify

which PCB to use, always qualify segments that are referenced in the FROM clause

of an SQL statement by prefixing the segment name with the PCB name. You can

omit the PCB name only if the PSB contains only one PCB.

Figure 29 shows a PCB-qualified SQL query.

 Recommendation: For clarity and performance reasons, always qualify segments in

the FROM clause by using the PCB alias.

Summary of FROM Clause Usage

When using the FROM clause in SQL calls to IMS databases:

v Do not join segments in the FROM clause.

v List only one segment in the FROM clause.

v List the lowest-level segment that is used in the SELECT list and WHERE clause.

UPDATE DealershipDB.Order

SET SerialNo = ’93234’, DeliverDate = ’12/11/2004’

WHERE OrderNumber = ’123’

Figure 28. Sample UPDATE Statement

SELECT *

 FROM DealershipDB.Model

Figure 29. PCB-Qualified SQL Query Example

Supported SQL Keywords

136 IMS Java Guide and Reference

|
|
|

|
|
|

|
|
|
|
|
|

v Qualify the segment in the FROM clause by using the PCB alias.

WHERE Clause Usage

IMS Java converts the WHERE clause in an SQL query to an SSA list when

querying a database. SSA rules restrict the type of conditions you can specify in

the WHERE clause. This section describes how you must form your WHERE

clause so that it can be converted into SSA lists.

The WHERE clause can contain fields only from the segment in the FROM clause

or segments that are higher in the hierarchy. The fields in the WHERE clause can

be DBD-defined fields. These fields that are in the DBD are marked in the

DLIModel IMS Java Report as being either primary key fields or search fields.

Fields in the WHERE clause also can be can be fields that are defined by a COBOL

copybook or by the DLIModel utility when these non-DBD-defined fields are

sub-fields of a DBD-defined field. See “Non-DBD-Defined Fields in the WHERE

Clause” on page 138.

You cannot use parentheses in the WHERE clause because SSAs do not support

parentheses.

Fields in the WHERE clause can be compared only to values, not to other fields.

You can use the following operators between field names and values in the

individual qualification statements:

 <

 <=

 =

 =<

 <

 !=

For example, the following WHERE clause will fail because it is trying to compare

two fields:

WHERE Sales.SoldBy=Sales.PurchaserFirstName

The following example is valid because the WHERE clause is comparing a field to

a value:

WHERE Sales.SoldBy='Lauren'

When using prepared statements, you can use the question mark (?) character,

which is later filled in with a value. For example, the following WHERE clause is

valid:

WHERE Sales.Soldby= ?

You can combine multiple qualification statements with AND and OR operators,

but you must follow special rules. Because separate SSAs are created for each

segment, list all qualification statements for a segment together and combine

qualification statements for different segments with an AND operator.

Qualification statements that are combined with an AND operator make up a

qualification set. For a qualification set to be satisfied (true), all qualification

statements in the set must be satisfied. For the WHERE clause (and, therefore, the

SSA qualification) to be satisfied, at least one qualification set must be satisfied.

Supported SQL Keywords

Chapter 7. JDBC Access to IMS Data 137

|
|
|
|

|
|
|
|

The OR operator can be used only between qualification statements that contain

fields from the same segment. Because of the way SSA lists are created, you cannot

use the OR operator across segments. For example, the following WHERE clause

will fail because the Soldby field and DealerName fields are in different segments:

WHERE Sales.SoldBy='Kiran' OR Dealer.DealerName='Bach'

However, the following WHERE clause is valid because the OR operator is

between two qualification statements for the same segment:

WHERE Sales.SoldBy='Kyle' OR Sales.PurchaserFirstName='Chris'

Non-DBD-Defined Fields in the WHERE Clause

In addition to using DBD-defined (search) fields in your WHERE clause, you can

use fields that are defined by a COBOL copybook or the DLIModel utility, as long

as the fields are a subset of a field defined in a DBD. This function is useful when

you have broken a large field that is defined in the DBD into smaller sub-fields.

IMS supports all type conversions for the individual sub-fields.

The following rules apply when you use sub-fields in an SQL WHERE clause:

v The set of sub-fields that comprise a DBD-defined field must account for all of

the bytes in the DBD-defined field.

v All sub-fields in a set that comprises a DBD-defined field must be listed together

(similarly to how all fields in a segment must be listed together), but these

sub-fields can be listed in any order.

v The only comparison operator allowed for sub-fields is ″=″.

v The sub-fields in a set that comprises a DBD-defined field must be separated by

the AND operator. OR operators are not allowed to connect sub-fields in a set

together. OR operators can be used to connect two sets of sub-fields.

Summary of WHERE Clause Usage

When using the WHERE clause in SQL calls to IMS databases:

v Use fields that are in any segment from the root segment down to the segment

in the FROM clause.

v Qualify fields with segment names.

v Compare fields and sub-fields to values, not other fields.

v Do not use parentheses.

v List all qualification statements for a segment together.

v Combine qualification statements for different segments with an AND operator.

v Do not use the OR operator across segments.

Supported SQL Aggregate Functions

IMS Java supports the following SQL aggregate functions and related keywords:

 AS

 ASC

 AVG

 COUNT

 DESC

 GROUP BY

 MAX

 MIN

 ORDER BY

 SUM

Supported SQL Keywords

138 IMS Java Guide and Reference

|
|
|
|
|
|

|

|
|

|
|
|

|

|
|
|

|

Important: The field names that are specified in a GROUP BY or ORDER BY

clause must match exactly the field name that is specified in the

SELECT statement.

The supported SQL aggregate functions accept only a single field name in a

segment as the argument (the DISTINCT keyword is not allowed). Table 3 shows

the data types of the fields that are accepted by the aggregate functions, along with

the resulting data type in the result set.

 Table 3. Supported SQL Aggregate Functions and Their Supported Data Types

Function Argument Type Result Type

SUM and AVG Byte Long

Short Long

Integer Long

Long Long

Single-precision floating point Double-precision floating point

Double-precision floating point Double-precision floating point

MIN and MAX Any type except BIT, BLOB, or

BINARY

Same as argument type

COUNT Any type Long

The result set column name from an aggregate function is a combination of the

aggregate function name and the field name separated by an underscore character

(_). For example, the statement SELECT MAX(age) results in a column name

MAX_age. Use this column name in all subsequent references—for example,

resultSet.getInt("MAX_age").

If the aggregate function argument field is segment-qualified, the result-set column

name is the combination of the aggregate function name, the segment name, and

the field name, separated by underscore characters (_). For example, SELECT

MAX(Employee.age) results in a column name MAX_Employee_age.

You can use the AS keyword to rename the aggregate function column in the result

set or any other field in the SELECT statement. You cannot use the AS keyword to

rename a segment in the FROM clause. When you use the AS keyword to rename

the field, you must use this new name to refer to the field. For example, if you

specify SELECT MAX(age) AS oldest, a subsequent reference to the aggregate

function column is resultSet.getInt("oldest").

The result set type for aggregate functions and ORDER BY and GROUP BY clauses

is always TYPE_SCROLL_INSENSITIVE, even if they are defined explicitly as

TYPE_FORWARD_ONLY. A TYPE_SCROLL_INSENSITIVE result set is not

sensitive to any changes in the database when the result set is open.

SQL Extensions for XML Storage and Retrieval

IMS Java has two SQL99 extensions for user-defined functions (UDFs): retrieveXML

and storeXML. These UDFs are used during JDBC calls to store and retrieve XML

from IMS databases. This interface is independent of the physical storage of the

data.

In this topic:

SQL Aggregate Functions

Chapter 7. JDBC Access to IMS Data 139

v “retrieveXML UDF”

v “storeXML UDF” on page 141

retrieveXML UDF

The retrieveXML UDF creates an XML document from an IMS database and

returns an object that implements the java.sql.Clob interface. It does not matter to

the application whether the data is decomposed into standard IMS segments or the

data is in intact XML documents in the IMS database.

The Clob JDBC type stores a Character Large Object as a column value in a row of

the result set. The getClob method retrieves the XML document from the result set.

Figure 30 shows the relationship between the retrieveXML UDF and the getClob

method.

 To create an XML document, use a retrieveXML UDF in the SELECT statement of

your JDBC call. Pass in the name of the segment that will be the root element of

the XML document (for example, retrieveXML(Model)). The dependent segments of

the segment that you pass in will be in the generated XML document if they match

the criteria listed in the WHERE clause.

The segment that you specify to be the root element of the XML document does

not have to be the root segment of the IMS record. The dependent segments are

mapped to the XML document based on the generated XML schema.

Within a single application program, you can issue SELECT calls that contain

retrieveXML UDFs against multiple PCBs in an application’s PSB. You can also

issue multiple retrieveXML UDFs that pass in various segments along the

requested hierarchical path from a single SELECT call. From a single SELECT call,

you can also retrieve other types of data in addition to the XML document (for

example, SELECT retrieveXML(Model), Dealer.DealerNo).

The following example creates an XML document that has the root element of

Model:

SELECT retrieveXML(Model)

FROM DealershipDB.Model

WHERE Model.CarYear = '2004'

The XML document that is created has the root element of the Model segment that

has the CarYear field of 2004.

Figure 30. Creating XML Using the retrieveXML UDF and the getClob Method

JDBC Extensions for XML Storage and Retrieval

140 IMS Java Guide and Reference

The XML document that is retrieved is stored in the result set. For each row in the

result set, the UDF creates an implementation of the JDBC java.sql.Clob interface,

and places it in the corresponding result set column. This Clob object encapsulates

the XML document created from the database.

The storage requirements for the XML document Clob objects in a result set

depend on whether the result set is forward-only or scroll-insensitive.

If the Clob object is returned to a forward-only ResultSet object, data is retrieved

from the database and composed into XML only when the application requests the

data. For example, if the application invokes the getAsciiStream or

getCharacterStream method, the application receives a Stream object. As the

application reads the XML stream, the segments are retrieved from the database

and composed into XML. At the end of the stream, the entire XML document has

been returned to the application having never been fully materialized in the Clob

object.

If the Clob object is returned to a scroll-insensitive ResultSet object, the whole

document is materialized in the Clob. This option requires more memory than

forward-only result sets, especially for large XML documents and result sets with a

lot of rows.

To retrieve the XML document from the result set, use the getClob method.

The following example retrieves an XML document, encapsulated by the Clob

object, from the result set:

Clob xmlDoc = resultSet.getClob(1);

Using the getClob interface, you can, for example, retrieve all or part of document

content as a String object, or request a Stream or Reader object for the document.

With the Stream or Reader object, you can send the document to an output queue

or as a response to an HTTP or SOAP request, or save it in a local HFS file. You

can also selectively retrieve elements using a selected subset of XPath expressions,

or transform the document using XSLT.

storeXML UDF

The storeXML UDF inserts an XML document into an IMS database at the position

in the database that the WHERE clause indicates. IMS, not the application, uses the

XML schema and the Java metadata class to determine the physical storage of the

data into the database. It does not matter to the application whether the XML is

stored intact or decomposed into standard IMS segments.

An XML document must be valid before in can be stored into a database. The

storeXML UDF validates the XML document against the XML schema before storing

it. If you know that the XML document is valid and you do not want IMS to

revalidate it, use the storeXML(false) UDF.

To store an XML document, use the storeXML UDF in the INSERT INTO clause of a

JDBC prepared statement. Within a single application program, you can issue

INSERT calls that contain storeXML UDFs against multiple PCBs in an application’s

PSB.

The SQL query must have the following syntax:

JDBC Extensions for XML Storage and Retrieval

Chapter 7. JDBC Access to IMS Data 141

INSERT INTO PCB.Segment (storeXML())

VALUES (?)

WHERE Segment.Field = value

Because an XML document is not a valid argument in the VALUES clause of the

INSERT statement, you must use a prepared statement.

The following example stores the XML document named myDoc.xml from the file

system into an IMS database using the Dealership PCB. A new Model segment,

which is the root of the XML document, is inserted under the Dealer segment that

has the number A123. The rest of the XML document is stored as dependent

segments of Model as specified by the XML Schema.

InputStreamReader myXMLDoc =

 new InputStreamReader(new FileInputStream("myDoc.xml"));

String query = "INSERT INTO Dealership.Model (storeXML())" +

 " VALUES (?)" +

 " WHERE Dealer.DealerNumber = ’A123’ ";

PreparedStatement pstmt = conn.preparedStatement(query);

pstmt.setCharacterStream(1, myXMLDoc, -1);

Supported JDBC Interfaces

The following list describes the required interfaces by JDBC 2.1that are

implemented in the database package, and it describes the limitations in the IMS

Java implementation of these interfaces.

java.sql.Connection

java.sql.Connection is an object that represents the connection to the

database. A Connection reference is retrieved from the DriverManager object

that is implemented in the java.sql package. The DriverManager object

obtains a Connection reference by querying its list of registered Driver

instances until it finds one that supports the universal resource locator

(URL) that is passed to the DriverManager.getConnection method.

 Restriction: IMS does not support the local, connection-based commit

scope that is defined in the JDBC model. Therefore, the IMS Java

implementation of the methods Connection.commit, Connection.rollback,

and Connection.setAutoCommit result in an SQL exception when these

methods are called.

 Figure 31 shows the sample dealership application code that establishes a

connection to the sample database:

java.sql.DatabaseMetaData

The DatabaseMetaData interface defines a set of methods for querying

information about the database, including capabilities the database might

or might not support. The class is provided for tool developers and is

normally not used in client programs. Much of the functionality is specific

to relational databases and is not implemented for DL/I databases.

java.sql.Driver

The Driver interface itself is not usually used in client applications,

connection = DriverManager.getConnection

("jdbc:dli:dealership.application.DealerDatabaseView");

Figure 31. Establishing a Connection to the Dealership Database

JDBC Extensions for XML Storage and Retrieval

142 IMS Java Guide and Reference

although an application must dynamically load a particular Driver

implementation by name. One of the first lines in an IMS JDBC program

for IMS access must be:

Class.forName("com.ibm.ims.db.DLIDriver");

This code loads the IMS Java driver and causes the Driver implementation

to register itself with the DriverManager object so that the driver can later

be found by DriverManager.getConnection. The Driver implementation

creates and returns a Connection object to the DriverManager object. The

IMS Java implementation of JDBC is not fully JDBC-compliant and the

Driver object method jdbcCompliant returns a value of false.

java.sql.Statement

A Statement interface is returned from the Connection.createStatement

method. The Statement class and its subclass, PreparedStatement, define

the interfaces that accept SQL statements and return tables as ResultSet

objects. The code to create a Statement object is as follows:

Statement statement = connection.createStatement();

Restriction: The IMS Java implementation of the Statement interface does

not support:

v Named cursors. Therefore, the method Statement.setCursorName throws

an SQL exception.

v Aborting a DL/I operation. Therefore, the method Statement.cancel

throws an SQL exception.

v Setting a time-out for DL/I operations. Therefore, the methods

Statement.setQueryTimeout and Statement.getQueryTimeout throw SQL

exceptions.

java.sql.ResultSet

The ResultSet interface defines an iteration mechanism to retrieve the data

in the rows of a table, and to convert the data from the type defined in the

database to the type required in the application. For example,

ResultSet.getString converts an integer or decimal data type to an

instance of a Java String. The code to return ResultSet object is as follows:

ResultSet results = statement.executeQuery(queryString);

Rather than building a complete set of results after a query is run, the IMS

Java implementation of ResultSet interface retrieves a new segment

occurrence each time the method ResultSet.next is called.

 Restriction: The IMS Java implementation of ResultSet does not support:

v Returning data as an ASCII stream. Therefore the method

ResultSet.getAsciiStream throws an SQL exception.

v Named cursors. Therefore the method ResultSet.getCursorName throws

an SQL exception.

v The method ResultSet.getUnicodeStream, which is deprecated in JDBC

2.1.

java.sql.ResultSetMetaData

The java.sql.ResultSetMetaData interface defines methods to provide

information about the types and properties in a ResultSet object. It

includes methods such as getColumnCount, isSigned, getPrecision, and

getColumnName.

Supported JDBC Interfaces

Chapter 7. JDBC Access to IMS Data 143

java.sql.PreparedStatement

The PreparedStatement interface extends the Statement interface, adding

support for pre-compiling an SQL statement (the SQL statement is

provided at construction instead of execution), and for substituting values

in the SQL statement (for example, UPDATE Suppliers SET Status = ?

WHERE City = ?).

JDBC Prepared Statements for SQL

To improve performance of your IMS Java application, use JDBC prepared

statements for the SQL. The PreparedStatement class completes the initial steps in

preparing queries only once so that you need to provide the parameters only

before each repeated database call.

The PreparedStatement object performs the following actions only once before

repeated database calls are made:

1. Parses the SQL.

2. Cross-references the SQL with the IMS Java DLIDatabaseView object.

3. Builds SQL into SSAs before a database call is made.

Important: You must use a prepared statement when you store XML into a

database. For more information, see “storeXML UDF” on page 141.

Supported JDBC Data Types

IMS Java supports the JDBC data types that are listed in Table 4. The DLIModel

IMS Java Report indicates the JDBC type that is assigned to each field in the

DLIDatabaseView subclass. Table 4 also lists the supported Java data types for each

JDBC type.

 Table 4. Supported JDBC Data Types

JDBC Data Type Java Data Type

CHAR String

CLOB Clob (supported only for storage and

retrieval of XML)

VARCHAR String

BIT boolean

TINYINT byte

SMALLINT short

INTEGER int

BIGINT long

FLOAT float

DOUBLE double

BINARY byte[]

PACKEDDECIMAL java.math.BigDecimal

ZONEDDECIMAL java.math.BigDecimal

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

Supported JDBC Interfaces

144 IMS Java Guide and Reference

Table 5 shows the get methods that are available for accessing different types of

JDBC data.

The methods that are marked with “X” are methods that are designed for

accessing the given data type. No truncation or data loss occurs when you use

those methods. The methods that are marked with “O” are all other legal calls.

Data integrity is not be ensured when you use these methods. If the box is does

not contain an “X” or an “O”, using that get method for that data type results in

an exception.

 Table 5. ResultSet.getxxx Methods to Retrieve JDBC Types

ResultSet.getx

Methods

JDBC Types

T
IN

Y
IN

T

S
M

A
L

L
IN

T

IN
T

E
G

E
R

B
IG

IN
T

FL
O

A
T

D
O

U
B

L
E

B
IT

C
H

A
R

V
A

R
C

H
A

R

PA
C

K
E

D
D

E
C

IM
A

L
1

Z
O

N
E

D
E

C
IM

A
L

1

C
L

O
B

2

B
IN

A
R

Y

D
A

T
E

T
IM

E

T
IM

E
S

TA
M

P

getByte X O O O O O O O O O O

getShort O X O O O O O O O O O

getInt O O X O O O O O O O O

getLong O O O X O O O O O O O

getFloat O O O O X O O O O O O

getDouble O O O O O X O O O O O

getBoolean O O O O O O X O O O O

getString O O O O O O O X X O O O O O O

getBigDecimal O O O O O O O O O X X

getClob X

getBytes X

getDate O O X O

getTime O O X O

getTimestamp O O O O X

Notes:

1. PACKEDDECIMAL and ZONEDDECIMAL are IMS Java JDBC types. All other

types are standard SQL types defined in SQL92. Restriction:

PACKEDDECIMAL and ZONEDDECIMAL data types do not support the Sign

Leading or Sign Separate modes. For these two data types, sign information is

always stored with the Sign Trailing method.

2. CLOB is supported only for the storage and retrieval of XML.

If the field type is either PACKEDDECIMAL or ZONEDDECIMAL, the type

qualifier is the PICTURE string that represents the layout of the field. All COBOL

PICTURE strings that contain valid combinations of 9s, Ps, Vs, and Ss are

supported. Expansion of PICTURE strings is handled automatically. For example,

’9(5)’ is a valid PICTURE string. For zoned decimal numbers, the decimal point

can also be used in the PICTURE string.

Supported JDBC Data Types

Chapter 7. JDBC Access to IMS Data 145

If the field contains DATE, TIME, or TIMESTAMP data, the type qualifier specifies

the format of the data. For example, a type qualifier of ddMMyyyy indicates that

the data is formatted as follows:

11122004 is December 11, 2004

For DATE and TIME types, all formatting options in the

java.text.SimpleDateFormat class are supported.

For the TIMESTAMP type, the formatting option ’f’ is available for nanoseconds.

TIMESTAMP can contain up to nine ’f’s and replaces the ’S’ options for

milliseconds. Instead, ’fff’ indicates milliseconds of precision. An example

TIMESTAMP format is as follows:

yyyy-mm-dd hh:mm:ss.fffffffff

General Mappings from COBOL Copybook Types to IMS Java and Java

Data Types

Table 6 describes how COBOL copybook types are mapped to DLITypeInfo

constants and Java data types.

 Table 6. Mapping from COBOL Formats to DLITypeInfo Constants and Java Data Types

Copybook Format DLITypeInfo Constant Java Data Type

PIC X CHAR java.lang.String

PIC 9 BINARY1 See Table 7.2 See Table 7.2

COMP-1 FLOAT float

COMP-2 DOUBLE double

PIC 9 COMP-33 PACKEDDECIMAL java.math.BigDecimal

PIC 9 DISPLAY4 ZONEDDECIMAL java.math.BigDecimal

Notes:

1. Synonyms for BINARY data items are COMP and COMP-4.

2. For BINARY data items, the DLITypeInfo constant and Java type depend on the

number of digits in the PICTURE clause. Table 7 describes the type based on

PICTURE clause length.

3. PACKED-DECIMAL is a synonym for COMP-3.

4. If the USAGE clause is not specified at either the group or elementary level, it

is assumed to be DISPLAY.

Table 7 shows the DLITypeInfo constants and the Java data types based on the

PICTURE clause.

 Table 7. DLITypeInfo Constants and Java Data Types Based on the PICTURE Clause

Digits in PICTURE Clause

Storage

Occupied

DLITypeInfo

Constant Java Data Type

1 through 4 2 bytes SMALLINT short

5 through 9 4 bytes INTEGER int

10 through 18 8 bytes BIGINT long

Table 8 on page 147 shows examples of specific copybook formats mapped to

DLITypeInfo constants.

Supported JDBC Data Types

146 IMS Java Guide and Reference

Table 8. Copybook Formats Mapped to DLITypeInfo Constants

Copybook Format DLITypeInfo Constant

PIC X(25) CHAR

PIC S9(04) COMP SMALLINT

PIC S9(06) COMP-4 INTEGER

PIC S9(12) BINARY BIGINT

COMP-1 FLOAT

COMP-2 DOUBLE

PIC S9(06)V99 ZONEDDECIMAL

PIC 9(06).99 ZONEDDECIMAL

PIC S9(06)V99 COMP-3 PACKEDDECIMAL

JDBC Recommendations for IMS Databases

Although the JDBC interface to an IMS database closely follows the relational

database paradigm, the segments are physically stored in a hierarchical database,

which affects the semantics of your JDBC calls to some extent. To avoid

unexpected results or potential performance problems, follow these

recommendations:

v When you code a SELECT list, generally try to supply predicates in the WHERE

clause for all levels down the hierarchy to your target segment.

If you supply a predicate in the WHERE clause for a target segment somewhere

down the hierarchy and omit predicates for its parents, IMS must scan all

candidate segments at the parent levels in an attempt to match the predicate that

you supplied. For example, if you are retrieving a second-level segment and you

supply a predicate for that second-level segment, but do not supply one for the

root segment, IMS might perform a full database scan, testing every second-level

segment under every root against the predicate. This has performance

implications, particularly at the root level, and also might result in unexpected

segments being retrieved. A similar consideration applies to locating segments

for UPDATE clauses.

v When you insert a new segment, generally try to supply predicates in the

WHERE clause for all levels down the hierarchy to your target new segment.

If you omit a predicate for any level down to the insert target segment, IMS

chooses the first occurrence of a segment at that level that allows it to satisfy

remaining predicates, and performs the insert in that path. This might not be

what you intended. For example, in a three-level database, if you insert a

third-level segment, and supply a predicate for the root but none at the

second-level, your new segment will always be inserted under the first

second-level segment under the specified root.

v If you delete a segment that is not a bottom-level (leaf) segment in its hierarchy,

you also delete the remaining segments in that hierarchical subtree. The entire

family of segments of all types that are located hierarchically below your target

deleted segment are also usually deleted.

v When you provide predicates to identify a segment, the search is generally faster

if the predicate is qualified on a primary or secondary index key field, rather

than simply on a search field. Primary and secondary key fields are identified

for each segment in the DLIModel IMS Java Report.

General Mappings from COBOL Copybook Types

Chapter 7. JDBC Access to IMS Data 147

Java Metadata Classes for IMS Databases

To access a set of IMS databases using JDBC, you must describe to IMS Java the

application’s view of the databases. The application view information is in the

program specification block (PSB), but you must first convert this information into

a form that you can use in your Java application: a subclass of

com.ibm.ims.db.DLIDatabaseView. This subclass is called the IMS Java metadata

class. When you establish the JDBC database connection, you pass the name of this

class to IMS Java.

Create the metadata class for a PSB by providing the application PSB source and

related DBD source files to the DLIModel utility so that the utility can generate the

IMS Java metadata class. The DLIModel utility is described in IMS Version 9:

Utilities Reference: System.

The examples used throughout this chapter are based on the sample application.

The PSB for the sample dealership application is shown in Figure 32.

The physical DBD that is referenced by the PSB in Figure 32 is shown in Figure 33.

 DLR_PCB1 PCB TYPE=DB,DBDNAME=DEALERDB,PROCOPT=GO,KEYLEN=42

 SENSEG NAME=DEALER,PARENT=0

 SENSEG NAME=MODEL,PARENT=DEALER

 SENSEG NAME=ORDER,PARENT=MODEL

 SENSEG NAME=SALES,PARENT=MODEL

 SENSEG NAME=STOCK,PARENT=MODEL

 PSBGEN PSBNAME=DLR_PSB,MAXQ=200,LANG=JAVA

 END

Figure 32. Sample PSB for the Sample Dealership Application

 DBD NAME=DEALERDB,ACCESS=(HDAM,OSAM),RMNAME=(DFSHDC40.1.10)

 SEGM NAME=DEALER,PARENT=0,BYTES=94,

 FIELD NAME=(DLRNO,SEQ,U),BYTES=4,START=1,TYPE=C

 FIELD NAME=DLRNAME,BYTES=30,START=5,TYPE=C

 SEGM NAME=MODEL,PARENT=DEALER,BYTES=43

 FIELD NAME=(MODTYPE,SEQ,U),BYTES=2,START=1,TYPE=C

 FIELD NAME=MAKE,BYTES=10,START=3,TYPE=C

 FIELD NAME=MODEL,BYTES=10,START=13,TYPE=C

 FIELD NAME=YEAR,BYTES=4,START=23,TYPE=C

 FIELD NAME=MSRP,BYTES=5,START=27,TYPE=P

 SEGM NAME=ORDER,PARENT=MODEL,BYTES=127

 FIELD NAME=(ORDNBR,SEQ,U),BYTES=6,START=1,TYPE=C

 FIELD NAME=LASTNME,BYTES=25,START=50,TYPE=C

 FIELD NAME=FIRSTNME,BYTES=25,START=75,TYPE=C

 SEGM NAME=SALES,PARENT=MODEL,BYTES=113

 FIELD NAME=(SALDATE,SEQ,U),BYTES=8,START=1,TYPE=C

 FIELD NAME=LASTNME,BYTES=25,START=9,TYPE=C

 FIELD NAME=FIRSTNME,BYTES=25,START=34,TYPE=C

 FIELD NAME=STKVIN,BYTES=20,START=94,TYPE=C

 SEGM NAME=STOCK,PARENT=MODEL,BYTES=62

 FIELD NAME=(STKVIN,SEQ,U),BYTES=20,START=1,TYPE=C

 FIELD NAME=COLOR,BYTES=10,START=37,TYPE=C

 FIELD NAME=PRICE,BYTES=5,START=47,TYPE=C

 FIELD NAME=LOT,BYTES=10,START=52,TYPE=C

 DBDGEN

 FINISH

 END

Figure 33. DBD for the Sample Dealership Database

Java Metadata Classes for IMS

148 IMS Java Guide and Reference

The DLIModel utility generates a subclass of DLIDatabaseView from the PSB and

DBD. It also produces a report, called the DLIModel IMS Java Report, that

provides information about the metadata class. Figure 34 shows an example of a

DLIModel IMS Java Report.

The report supplements the information in the generated metadata class and the

original PSB and DBD source files. Use this information when you write JDBC calls

to IMS databases.

The DLIModel IMS Java Report provides you with the following information:

v The name of the metadata class (DealerDatabaseView in this example) to use

when you establish a connection to the database.

v The hierarchy of segments for each PCB.

DLIModel IMS Java Report

========================

Class: DealerDatabaseView in package: com.ibm.ims.tooling generated for PSB: AUTPSB11

==

PCB: DealershipDB

==

Segment: Dealer

Field: DealerNumber Type=CHAR Length=4 ++ Primary Key Field ++

Field: DealerName Type=CHAR Length=30

Field: DealerAddress Type=CHAR Length=50

Field: YTDSales Type=PACKEDDECIMAL Type Qualifier=S9(18)

==

 Segment: Model

 Field: ModelTypeCode Type=CHAR Length=2 ++ Primary Key Field ++

 Field: CarMake Type=CHAR Length=10 (Search Field)

 Field: CarModel Type=CHAR Length=10 (Search Field)

 Field: CarYear Type=CHAR Length=4 (Search Field)

 Field: Price Type=CHAR Length=5 (Search Field)

 Field: EPACityMilage Type=CHAR Length=4

 Field: EPAHighwayMilage Type=CHAR Length=4

 Field: Horsepower Type=CHAR Length=4

 ==

 Segment: Order

 Field: OrderNumber Type=CHAR Length=6 ++ Primary Key Field ++

 Field: PurchaserLastName Type=CHAR Length=25 (Search Field)

 Field: PurchaserFirstName Type=CHAR Length=25 (Search Field)

 Field: Options Type=CHAR Length=30

 Field: Price Type=ZONEDDECIMAL Type Qualifier=99999

 Field: OrderDate Type=CHAR Length=8

 Field: SerialNo Type=CHAR Length=8

 Field: DeliverDate Type=CHAR Length=8

 ==

 Segment: Sales

 Field: DateSold Type=CHAR Length=8 ++ Primary Key Field ++

 Field: PurchaserLastName Type=CHAR Length=25 (Search Field)

 Field: PurchasetFirstName Type=CHAR Length=25 (Search Field)

 Field: StockVINumber Type=CHAR Length=20 (Search Field)

 Field: PurchaserAddress Type=CHAR Length=25

 Field: SoldBy Type=CHAR Start=84 Length=10

 ==

 Segment: Stock

 Field: StockVINumber Type=CHAR Length=20 ++ Primary Key Field ++

 Field: Color Type=CHAR Length=10 (Search Field)

 Field: Price Type=ZONEDDECIMAL Type Qualifier=99999

 Field: Lot Type=CHAR Length=10 (Search Field)

 Field: DateIn Type=CHAR Length=8

 Field: DateOut Type=CHAR Length=8

Figure 34. Sample DLIModel IMS Java Report for the Dealership Sample Database

Java Metadata Classes for IMS

Chapter 7. JDBC Access to IMS Data 149

v The fields within each segment, which are specified by the DBD, by any COBOL

copybooks, or by control statements. For example, the fields DealerAddress and

YTDSales in the Dealer segment are added fields.

v The names of PCBs, segments, and fields to use in your JDBC calls. These names

may be alias names that are assigned to the IMS entities. Alias names are

intended to be more representative and intuitive identifiers for your Java

application to use rather than the 8-character names in the PSB and DBDs. In the

example, the name DealershipDB replaces the PCB name DLR_PCB1 from the PSB.

A comparison of the names of the segments and the fields in the report with

their names in the DBD shows that they have all been assigned more

meaningful names.

v The data types of fields. The data types of the fields are based on the simple

TYPE property of fields in the DBD and the DLIModel utility control statements.

For example, the field YTDSales in the Dealer segment is type

PACKEDDECIMAL with a type qualifier (format descriptor) of S9(18).

v The fields in each segment, which are identified as primary or secondary index

fields, search fields, or other fields.

Sample Application that Uses JDBC

Because IMS is a hierarchical database, IMS Java does not fully implement the

JDBC API. This section describes the IMS Java implementation of JDBC with a

sample application.

To use JDBC to read, update, insert, and delete segment instances, an application

must:

1. Obtain a connection to the database. Load the DLIDriver and retrieve a

Connection object from the DriverManager.

2. Retrieve a Statement or PreparedStatement object from the Connection object

and execute it. An example of this step is in Figure 35 on page 151.

3. Iterate the ResultSet object returned from the Statement or PreparedStatement

object to retrieve specific field results. An example of this step is in Figure 35

on page 151.

Figure 35 on page 151, which is part of a sample method showModelDetails,

obtains a Connection object, retrieves a PreparedStatement object, makes SQL calls

to the database, and then iterates the ResultSet object that is returned from the

PreparedStatement object.

Java Metadata Classes for IMS

150 IMS Java Guide and Reference

Imported Packages for JDBC Access to IMS Databases

To use unqualified class names instead of fully-qualified names in your program,

include import statements at the top of the Java file.

Use the following import statement to make IMS database access classes available

by their unqualified class names:

import com.ibm.ims.db.*;

Use the following import statement to make JDBC classes available by their

unqualified class names:

import java.sql.*;

Connections to IMS Databases

Provide the name of the DLIDatabaseView subclass when retrieving a JDBC

Connection object.

When the following code is executed, DLIDriver, a class in com.ibm.ims.db,

registers itself with the JDBC DriverManager object:

Class.forName("com.ibm.ims.db.DLIDriver");

When the following code is executed, the JDBC DriverManager object determines

which of the registered drivers supports the supplied string:

connection = DriverManager.getConnection

("jdbc:dli:dealership.application.DealerDatabaseView");

 public ModelDetailsOutput showModelDetails(ModelDetailsInput input)

 throws NamingException, SQLException, IMSException {

 // Extract the key from the input

 String modelKey = input.getModelKey();

 ModelDetailsOutput output = new ModelDetailsOutput();

 // Validate the key

 if (modelKey != null && !modelKey.trim().equals("")) {

 // Build the SQL query.

 String query = "SELECT * FROM Dealer.ModelSegment WHERE "

 + "ModelSegment.ModelKey = ’" + input.getModelKey() + "’";

 // Execute the query

 Statement statement = connection.createStatement();

 ResultSet results = statement.executeQuery(query);

 // Store the results in the output object and send it

 // back to the caller of this method.

 if (results.next()) {

 output.setMake(results.getString("Make"));

 output.setModelType(results.getString("ModelType"));

 output.setModel(results.getString("Model"));

 output.setYear(results.getString("Year"));

 output.setPrice(results.getString("MSRP"));

 output.setCount(results.getString("Counter"));

 }

 }

 return output;

 }

Figure 35. Example JDBC Application

Sample JDBC Application

Chapter 7. JDBC Access to IMS Data 151

Because the supplied string begins with jdbc:dli:, the JDBC DriverManager object

locates the DLIDriver instance and requests that it create a connection.

Sample JDBC Application

152 IMS Java Guide and Reference

Chapter 8. XML Storage in IMS Databases

Because XML and IMS databases are both hierarchical, IMS is a natural database

management system for managing XML documents. IMS allows you to easily

receive and store incoming XML documents as well as compose XML documents

from existing, legacy information stored that is in IMS databases. For example, you

can:

v Compose XML documents from all types of existing IMS databases, to support,

for example, business-to-business on demand transactions and

intra-organizational sharing of data.

v Receive incoming XML documents and store them in IMS databases. These

databases can be legacy databases or new databases. XML documents are stored

decomposed: the document is parsed and element data and attributes are stored

in fields in segments as normal IMS data. This is appropriate for data-centric

documents.

You can store XML documents decomposed, intact, or in a combination of

decomposed and intact. In decomposed storage mode, the incoming document is

parsed and element data and attributes are stored in fields as normal IMS data.

Decomposed storage is appropriate for data-centric documents. In intact storage,

the incoming document, including its tags, is stored directly in the database

without IMS being aware of its structure. Intact storage is appropriate for

document-centric documents.

To store XML in an IMS database or to retrieve XML from IMS, you must first

generate an XML schema and the IMS Java metadata class using the DLIModel

utility. The metadata and schema are used during the storage and retrieval of

XML. Your application uses the IMS Java JDBC user-defined functions storeXML

and retrieveXML to store XML in IMS databases, create XML from IMS data, or to

retrieve XML documents from IMS databases.

Figure 36 on page 154 shows the overall process for storing and retrieving XML in

IMS.

© Copyright IBM Corp. 2000, 2006 153

|
|
|
|
|
|
|

|
|
|
|
|
|

The following topics provide additional information:

v “Decomposed Storage Mode for XML”

v “Intact Storage Mode for XML” on page 156

v “XML Schema” on page 159

v “XML Type Representation” on page 159

v “JDBC Interface for Storing and Retrieving XML” on page 160

Decomposed Storage Mode for XML

In decomposed storage mode, all elements and attributes are stored as regular

fields in optionally repeating DL/I segments. During parsing, all tags and other

XML syntactic information is checked for validity and then discarded. The parsed

data is physically stored in the database as standard IMS data, meaning that each

defined field in the segment is of an IMS standard type. Because all XML data is

composed of string types (typically Unicode) with type information existing in the

validating XML schema, each parsed data element and attribute can be converted

to the corresponding IMS standard field value and stored into the target database.

Inversely, during XML retrieval, DL/I segments are retrieved, fields are converted

to the destination XML encoding, tags and XML syntactic information (stored in

the XML schema) are added, and the XML document is composed.

Figure 37 on page 155 shows how XML elements are decomposed and stored into

IMS segments.

Figure 36. Overview of XML Storage in IMS

Decomposed Storage Mode

154 IMS Java Guide and Reference

Decomposed storage mode is suitable for data-centric XML documents, where the

elements and attributes from the document typically are either character or

numeric items of known short or medium length that lend themselves to mapping

to fields in segments. Lengths are typically, though not always, fixed.

The XML document data can start at any segment in the hierarchy, which is the

root element in the XML document. The segments in the subtree below this

segment are also included in the XML document. Elements and attributes of the

XML document are stored in the dependent segments of the root element segment.

Any other segments in the hierarchy that are not dependent segments of that root

element segment are not part of the XML document and, therefore, are not

described in the describing XML schema.

When an XML document is stored in the database, the value of all segment fields

is extracted directly from the XML document. Therefore, any unique key fields in

any of the XML segments must exist in the XML document as an attribute or

simple element.

The XML hierarchy is defined by a PCB hierarchy that is based on either a physical

or a logical database. Logical relationships are supported for retrieval and

composition of XML documents, but not for inserting documents.

For a legacy database, either the whole database hierarchy, or any subtree of the

hierarchy can be considered as a decomposed data-centric XML document. The

segments and fields that comprise the decomposed XML data are determined only

by the definition of a mapping (the XML schema) between those segments and

fields and a document.

One XML schema is generated for each database PCB. Therefore, multiple

documents may be derived from a physical database hierarchy through different

XML Schemas. There are no restrictions on how these multiple documents overlap

and share common segments or fields.

Figure 37. How XML is Decomposed XML and Stored in IMS Segments

Decomposed Storage Mode

Chapter 8. XML Storage in IMS Databases 155

|
|
|
|

|
|
|

A new database can be designed specifically to store a particular type of

data-centric XML documents in decomposed form.

Intact Storage Mode for XML

In intact storage mode, all or part of an XML document is stored intact in a field.

The XML tags are not removed and IMS does not parse the document. XML

documents can be large, so the documents can span the primary intact field, which

contains the XML root element, and fields in overflow segments. The segments that

contain the intact XML documents are standard IMS segments and can be

processed like any other IMS segments. The fields, because they contain unparsed

XML data, cannot be processed like standard IMS fields. However, intact storage of

documents has the following advantages over decomposed storage mode:

v IMS does not need to compose or decompose the XML during storage and

retrieval. Therefore, you can process intact XML documents faster than

decomposed XML documents.

v You do not need to match the XML document content with IMS field data types

or lengths. Therefore, you can store XML documents with different structure,

content, and length within the same IMS database.

Intact XML storage requires a new IMS database or an extension of an existing

database because the XML document must be stored in segments and fields that

are specifically tailored for storing intact XML.

To store all or part of an XML document intact in an IMS database, the database

must define a base segment, which contains the root element of the intact XML

sub-tree. The rest of the intact XML sub-tree is stored in overflow segments, which

are child segments of the the base segment.

The base segment contains the root element of the intact XML sub-tree and any

decomposed or non-XML fields. Table 9 shows the format of the primary intact

field. This format is defined in the DBD, which is described in “DBDs for Intact

XML Storage” on page 157.

 Table 9. Primary Intact Field Format

Byte Content

1 0x01

2 Reserved

3–4 Bit 1 indicates whether there are overflow segments

Bit 2–16 indicate the length of the XML data in this field

rest of field XML data

The overflow segment contains only the only the overflow XML data field. Table 10

shows the format of the overflow XML data field. This format is defined in the

DBD, which is described in “DBDs for Intact XML Storage” on page 157.

 Table 10. Overflow XML Data Field Format

Byte Content

1–2 Key field sequence number

2–4 Bit 1 indicates whether there are

 more overflow segments after this segment

Bit 2–16 indicate the length of the XML data in this field

Decomposed Storage Mode

156 IMS Java Guide and Reference

|
|
|
|

|
|
|
|

Table 10. Overflow XML Data Field Format (continued)

Byte Content

rest of field Continuation of XML data

Side Segments for Secondary Indexing

IMS cannot search intact XML documents for specific elements within the

document. However, you can create a side segment that contains specific XML

element data. IMS stores the XML document intact, and also decomposed a specific

piece XML data into a standard IMS segment. This segment can then be searched

with a secondary index.

Figure 38 shows a base segment, an overflow segment, and the side segment for

secondary indexing.

 For information about the DBDs for side segments see Figure 40 on page 158 in

“DBDs for Intact XML Storage.”

DBDs for Intact XML Storage

The DBD shown in Figure 39 on page 158 defines a base segment and an overflow

segment. The XML intact field in the base segment contains a 4–byte header, so

you must define the field to be greater than 4 bytes. The XML intact field in the

overflow segment contains a 2–byte header for the length, so you must define the

field to be greater than 2 bytes.

Figure 38. Intact Storage of XML with a Secondary Index

Intact Storage Mode

Chapter 8. XML Storage in IMS Databases 157

|
|
|
|
|

|
|
|
|
|
|

The DBD shown in Figure 40 defines a base segment, and overflow segment, and a

side segment that is used by two secondary indexes.

 Figure 41 shows a secondary index for the DBD shown in Figure 40.

DBD NAME=dbdname,ACCESS=(PHDAM,VSAM),RMNAME=(DFSHDC40,1,5,bytes)

*Base segment

SEGM NAME=segname1,PARENT=0,BYTES=seglen1

* XML intact field, which contains a 4-byte header

FIELD NAME=(KEYFLD,SEQ,U),BYTES=length,START=startpos,TYPE=C

* Additional non-intact fields can be specified in segment

*

* Overflow Segment

SEGM NAME=segname2,PARENT=segname1,BYTES=seglen2

FIELD NAME=(SEQNO,SEQ,U),BYTES=2,START=1,TYPE=C

* XML intact field, which contains a 2-byte header for length

FIELD NAME=INTDATA,BYTES=1,START=3,TYPE=C

DBDGEN

FINISH

END

Figure 39. DBD for Intact XML Storage and No Secondary Indexes

DBD NAME=dbdname,ACCESS=(PHDAM,VSAM),RMNAME=(DFSHDC40,1,5,200)

* Base segment

SEGM NAME=segname1,PARENT=0,BYTES=seglen1

* XML intact field, which contains a 4-byte header

FIELD NAME=(KEYFLD,SEQ,U),BYTES=length,START=startpos,TYPE=C

*

LCHILD NAME=(issegname1,isdbd1),POINTER=INDX

XDFLD NAME=issrch1,SRCH=iskey1,SEGMENT=ssegname1

LCHILD NAME=(issegname2,isdbd2),POINTER=INDX

XDFLD NAME=issrch2,SRCH=iskey2,SEGMENT=ssegname2

* Overflow segment

SEGM NAME=segname2,PARENT=segname1,BYTES=seglen2

FIELD NAME=(SEQNO,SEQ,U),BYTES=2,START=1,TYPE=C

* XML intact field, which contains a 2-byte header for length

FIELD NAME=INTDATA,BYTES=1,START=3,TYPE=C

*

* Index side segment 1

SEGM NAME=ssegname1,PARENT=segname1,BYTES=iseglen1

FIELD NAME=(iskey1,SEQ,U),BYTES=islen1,START=1,TYPE=C

*

* Index side segment 2

SEGM NAME=ssegname2,PARENT=segname1,BYTES=iseglen2

FIELD NAME=(iskey2,SEQ,U),BYTES=islen2,START=1,TYPE=C

*

DBDGEN

FINISH

END

Figure 40. DBD for Intact XML Storage and Two Secondary Indexes

DBD NAME=isdbd1,ACCESS=(PSINDEX,VSAM)

SEGM NAME=issegname1,PARENT=0,BYTES=iseglen

FIELD NAME=(isfld1,SEQ,U),BYTES=islen1,START=1,TYPE=C

LCHILD NAME=(ssegname1,dbdname),INDEX=issrch1

DBDGEN

FINISH

END

Figure 41. Secondary Index DBD for Intact XML Storage

Intact Storage Mode

158 IMS Java Guide and Reference

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

XML Schema

The generated XML schema is an XML document that describes an IMS database

based on a PCB. In order to retrieve or store XML in IMS, an XML schema is

required . IMS uses the XML schema to validate an XML document that is either

being stored into IMS or being retrieved from IMS. The XML schema, not the

application program, determines the structural layout of the XML in the database.

The DLIDatabaseView subclass determines how the data is physically stored in the

database.

The DLIModel utility generates a schema that is based on a PCB. For information

about generating an XML schema, see IMS Version 9: Utilities Reference: System.

The generated XML schema must be made available at run time to provide the

XML structure of the data retrieved from the database or of an incoming XML

document being stored into IMS.

By default, a schema is loaded from the HFS root directory based on the PSB and

PCB names that are used in the retrieveXML or storeXML query.

To override the default location, which is the root file system, define the

environment variable ″http://www.ibm.com/ims/schema-resolver/file/path″ with

the value of the XML schema locations. For example, if the XML schemas are

located in the directory /u/schemas, define an environment variable to the SDK as

follows:

-Dhttp://www.ibm.com/ims/schema-resolver/file/path=/u/schema/

You can also specify the XML schema in the application program by setting the

system property. For example:

System.setProperty("http://www.ibm.com/ims/schema-resolver/file/path", "/u/schema");

XML Type Representation

IMS has no inherent type information and stores all of its segments as a simple

array of bytes. Therefore, it is up to all application programs that access an IMS

segment to agree on three pieces of information:

v A list of fields that are represented within each segment

v What data type each field stores

v How each data type is represented as bytes, including field redefinitions

In order for IMS to correctly produce XML documents from the database and to

breakdown and store XML documents into the database, it also needs to satisfy

these conditions.

In addition to the type of the field, each XML schema document lists every field as

one of the allowed 42 XML types. This information instructs any user of a valid

XML document how to interpret the information within it, and informs IMS in

how to generate an outgoing, or decompose an incoming, XML document. The

retrieveXML and storeXML UDFs validate XML documents, according to the

generated XML schema, and use the XML schema with the IMS Java metadata to

determine how to extract element and attribute values to populate fields and

segments.

XML Schema

Chapter 8. XML Storage in IMS Databases 159

|

|

Table 11 lists the IMS Java-supported XML schema data types.

 Table 11. IMS Java-Supported XML Schema Data Types

JDBC Data Type XML Schema Data Type

CHAR xsd:string

VARCHAR xsd:string

BIT xsd:boolean

TINYINT xsd:byte

SMALLINT xsd:short

INTEGER xsd:int

BIGINT xsd:long

FLOAT xsd:float

DOUBLE xsd:double

BINARY Not supported

PACKEDDECIMAL xsd:decimal

ZONEDECIMAL xsd:decimal

DATE xsd:gYear (for yyyy-MM) xsd:date (for yyyy)

xsd:gYearMonth (for yyyy-MM-dd)

TIME xsd:time

TIMESTAMP xsd:dateTime

JDBC Interface for Storing and Retrieving XML

A Java application program that is running in any of the following environments

can store XML in IMS and retrieve XML from IMS:

v IMS dependent region (JMP or JBP)

v WebSphere Application Server for z/OS

v WebSphere Application Server on a non-z/OS platform

v DB2 UDB for z/OS stored procedure

v CICS JCICS region

The IMS Java JDBC interface has been extended to support storage and retrieval of

XML. For more information, see “SQL Extensions for XML Storage and Retrieval”

on page 139.

XML Type Representation

160 IMS Java Guide and Reference

Chapter 9. Problem Determination

This chapter describes how to debug your Java applications that use IMS Java and

determine the source of problems within your applications.

The following topics provide additional information:

v “Exceptions”

v “XML Tracing for IMS Java” on page 162

v “Debugging an Unresettable JVM in a JMP or JBP Region” on page 165

Exceptions

Exceptions are thrown as a result of non-blank status codes and non-zero return

codes (in cases when there were no PCBs to deliver status codes) from IMS DL/I

calls. Even though an exception is thrown by the JavaToDLI class for every

non-blank status code, some of these exceptions are caught by the application or

database packages and converted to return values.

How Exceptions Map to DL/I Status Codes

The com.ibm.ims.base.IMSException class extends the java.lang.Exception class.

The DLIException class extends the IMSException class. The DLIException class

includes all errors that occur within the IMS Java library that are not a result of

any call to IMS.

You can use the following methods to get information from an IMSException

object:

getAIB

Returns the IMS application interface block (AIB) from the DL/I call that

caused the exception. The IMS AIB is null for the DLIException object. The

methods on the AIB can be called to return other information at the time of

the failure, including the resource or PCB name and the PCB itself.

getStatusCode

Returns the IMS status code from the DL/I call that caused the exception.

This method works with the JavaToDLI set of constants. The status code is

zero (0) for a DLIException object.

getFunction

Returns the IMS function from the DL/I call that caused the exception. The

function is zero (0) for a DLIException object.

The following database access methods of the DLIConnection class return false if

they receive a GB status code (no more such segments or segment not found) or a

GE status code (no such segment or end of database):

v DLIConnection.getUniqueSegment

v DLIConnection.getNextSegment

v DLIConnection.getUniqueRecord

v DLIConnection.getNextRecord

v DLIConnection.getNextSegmentInParent

© Copyright IBM Corp. 2000, 2006 161

The IMSMessageQueue.getUniqueMessage method returns false if it receives a QC

(no more messages) status code. The IMSMessageQueue.getNextMessage method

returns false if it receives a QD status code, which means that there are no more

segments for multi-segment messages.

The example in Figure 42 extracts information from an IMSException object:

Related Reading: For more information about DL/I status codes, see IMS Version

9: Application Programming: Database Manager and IMS Version 9: Application

Programming: Transaction Manager.

SQLException Objects

An SQLException object is thrown to indicate that an error has occurred either in

the Java address space or during database processing.

Each SQLException provides the following information:

v A string that describes the error.

– This string is available through the use of the getMessage() method.
v An “SQLstate” string that follows XOPEN SQLstate conventions.

– The values of the SQLstate string are described in the XOPEN SQL

specification.
v A link to the next SQL exception if more than one was generated.

– The next exception is used as a source of additional error information.

XML Tracing for IMS Java

Using the com.ibm.ims.base.XMLTrace class for z/OS applications or

com.ibm.ims.rds.XMLTrace for distributed applications, you can debug your Java

applications by tracing, or documenting, the flow of control throughout your

application. By setting up trace points throughout your application for output, you

can isolate problem areas and, therefore, know where to make adjustments to

produce the results you expect. In addition, because the XMLTrace class supports

writing input parameters and results, and the IMS Java library methods use this

feature, you can verify that correct results occur across method boundaries.

The XMLTrace class is different from the DLIModel utility trace. For information

about how to enable tracing for the DLIModel utility, see the OPTIONS statement

of the DLIModel utility in IMS Version 9: Utilities Reference: System.

Note: The XMLTrace class replaces the IMSTrace class. However, applications that

use the IMSTrace class will still function properly.

try {

 DealerDatabaseView dealerView = new DealerDatabaseView();

 DLIConnection connection = DLIConnection.createInstance(dealerView);

 connection.getUniqueSegment(dealerSegment, dealerSSAList);

} catch (IMSException e) {

 short statusCode = e.getStatusCode();

 String failingFunction = e.getFunction();

}

Figure 42. IMSException Class Example

Exceptions

162 IMS Java Guide and Reference

|
|
|
|
|
|
|
|

WebSphere Application Server Security Requirements for XML

Tracing

Before you can trace your application that runs on WebSphere Application Server

V5.0 for z/OS or WebSphere Application Server V5.0 on a non-z/OS platform, you

must add permissions to the WebSphere Application Server for z/OS server.policy

file and create a was.policy for the application EAR file.

To add permissions to the WebSphere Application Server for z/OS server.policy

file:

1. Open the WebSphere Application Server for z/OS server.policy file, which is in

the properties directory of the WebSphere Application Server installation

directory, and find the following code, which was added when you installed

the custom service (if this code is not in the file, add it):

grant codeBase "file:/imsjava/-" {

 permission java.util.PropertyPermission "*", "read, write";

 permission java.lang.RuntimePermission "loadLibrary.JavTDLI";

 permission java.io.FilePermission "/tmp/*", "read, write";

};

2. Below permission java.io.FilePermission "/tmp/*", "read, write";, add the

following permission, replacing traceOutputDir with the directory name for the

trace output file:

permission java.io.FilePermission "/traceOutputDir/*", "read, write";

To create the was.policy file:

1. Create a new file named was.policy that contains the following code, replacing

traceOutputDir with the directory name for the trace output file:

grant codeBase "file:${application}" {

 permission java.io.FilePermission "/traceOutputDir/*", "read, write";

};

2. Put the was.policy file in the META-INF directory of your application’s EAR

file.

Enabling XML Tracing

To debug with XMLTrace, you must first turn on the tracing function by calling one

of the XMLTrace.enable methods. Because tracing does not occur until this variable

is set, it is best to do so within a static block of your main application class. Then,

you must decide how closely you want to trace the IMS Java library’s flow of

control and how much tracing you want to add to your application code.

You can determine the amount of tracing in the IMS Java library by providing the

trace level in the XMLTrace.enable method. By default, this value is set to

XMLTrace.TRACE_EXCEPTIONS, which traces the construction of IMS Java-provided

exceptions. XMLTrace also defines constants for three types of additional tracing.

These constants provide successively more tracing from IMSTrace.TRACE_CTOR1

(level-one tracing of constructions) to IMSTrace.TRACE_DATA3 (level-three tracing of

data).

XMLTrace has the following trace levels:

Trace level Description

TRACE_EXCEPTIONS

Traces exceptions

TRACE_CTOR1 Traces level-1 constructors

XML Tracing

Chapter 9. Problem Determination 163

|

||

|
|

||

TRACE_METHOD1

Traces level-1 parameters, return values, methods, and constructors

TRACE_DATA1 Traces level-1 parameters, return values, methods, and constructors

TRACE_CTOR2 Traces level-2 constructors

TRACE_METHOD2

Traces level-2 parameters, return values, methods, and constructors

TRACE_DATA2 Traces level-2 parameters, return values, methods, and constructors

TRACE_CTOR3 Traces level-3 constructors

TRACE_METHOD3

Traces level-3 parameters, return values, methods, and constructors

TRACE_DATA3 Traces level-3 parameters, return values, methods, and constructors

Tracing the IMS Java Library Methods

To enable the tracing that is shipped with IMS Java library methods:

1. Call the XMLTrace.enable method and specify the root element name and the

trace level. For example:

XMLTrace.enable("MyTrace", XMLTrace.TRACE_METHOD1);

2. Set an output stream (a print stream or a character output writer) as the current

trace stream. For example:

a. Set the system error stream as the current trace stream:

XMLTrace.setOutputStream(System.err);

b. Set a StringWriter object (or any other type of writer) as the current trace

stream:

StringWriter stringWriter = new StringWriter();

XMLTrace.setOutputWriter(stringWriter);

3. Close the XML trace:

XMLTrace.close();

Steps 1 and 2 are best implemented within a static block of your main application

class, as shown in Figure 43.

Tracing Your Application

You can add trace statements to your application, similar to those provided by the

IMS Java library, by defining an integer variable that you test prior to writing trace

statements. Using a variable other than XMLTrace.libTraceLevel enables you to

control the level of tracing in your application independently of the tracing in the

IMS Java library. For example, you can turn off the tracing of IMS Java Library

routines by setting XMLTrace.libTraceLevel to zero, but still trace your application

code.

To enable tracing for your application:

1. Define an integer variable to contain the trace level for application-provided

code:

public static void main(String args[]){

 static {

 XMLTrace.enable("MyTrace", XMLTrace.TRACE_METHOD1);

 XMLTrace.setOutputStream(System.err);

 }

}

Figure 43. Setting a Trace within a Static Method

XML Tracing

164 IMS Java Guide and Reference

|
|

||

||

|
|

||

||

|
|

||

public int applicationTraceLevel = XMLTrace.TRACE_CTOR3;

2. Set up the XMLTrace method to trace methods, parameters, and return values as

necessary.

Debugging an Unresettable JVM in a JMP or JBP Region

If you need to debug reset trace events for the persistent reusable JVM in a JBP or

JMP region, you need to run the JVM in debug mode. The following messages in

your job log indicate that you should run in debug mode to determine the

problem:

DFSJVM00: ResetJavaVM() RC=-1

DFSJVM00: DestroyJavaVM() RC=-1

To run the JVM in debug mode, add DEBUG=Y to the DFSJVMEV sample member, or

the member that is specified by the DFSJMP or DFSJBP ENVIRON= parameter.

Related Reading:

v For more information about running the JVM in debug mode, see IBM Developer

Kit for OS/390, Java 2 Technology Edition: New IBM Technology featuring Persistent

Reusable Java Virtual Machines.

v For more information about the DFSJVMEV member and the ENVIRON=

parameter, see IMS Version 9: Installation Volume 2: System Definition and Tailoring.

XML Tracing

Chapter 9. Problem Determination 165

|

|
|
|
|

|
|

|
|

|

|
|
|

|
|

XML Tracing

166 IMS Java Guide and Reference

Appendix A. Preparing to Run the Dealership Samples

To run the dealership sample, you must prepare IMS by modifying the stage 1

input statements and loading the databases.

An IMS Java metadata class, which is a Java class that describes the IMS databases,

is required for all applications. The IMS Java metadata class for the dealership

sample applications, AUTPSB11DatabaseView, is provided compiled and is included

with the application files. You do not have to do anything further to prepare this

file.

The following topics provide additional information:

v “Modifying IMS Stage 1 Input Statements”

v “Loading the Dealership Sample Databases”

Modifying IMS Stage 1 Input Statements

Before you can access the sample dealership databases with the sample

applications, you must modify the IMS system definition stage 1 input statements.

To modify the stage 1 input statements:

1. Add the following DATABASE macro statements to the IMS stage 1 input

statements:

DATABASE DBD=AUTODB,ACCESS=UP

DATABASE DBD=EMPDB2,ACCESS=UP

DATABASE DBD=SINDEX11,ACCESS=UP

DATABASE DBD=SINDEX22,ACCESS=UP

2. Add a APPLCTN macro statement to the IMS stage 1 input statements for the

sample application’s program resource requirements. The sample applications

use AUTPSB11 as the PSB. All sample applications require an APPLCTN

statement for the AUTPSB11 PSB. For example:

APPLCTN PSB=AUTPSB11,PGMTYPE=TP,SCHEDTYP=PARALLEL

3. If you are running the JMP version of the dealership sample application, add

the TRANSACT macro statement following the APPLCTN macro statement.

The JMP dealership sample application is nonconversational. For example:

TRANSACT CODE=AUTRAN11,PRTY=(7,10,2),INQUIRY=NO,MODE=SNGL, X

 MSGTYPE=(SNGLSEG,NONRESPONSE,1)

Loading the Dealership Sample Databases

To run the sample dealership applications, you must first load the databases that

the applications access. The files that are needed to load these databases are in the

samples directory: pathprefixusr/lpp/ims/imsjava91/samples/dealership/
databases. To use these files, however, you must move them from HFS files to PDS

members. The following steps provide sample jobs that move the files. If you use

these sample jobs, replace path with pathprefixusr/lpp/ims/imsjava91/samples/
dealership/databases.

To load the dealership sample databases:

1. Move the following DBD source files (HFS) to your DBD source library (PDS

members):

© Copyright IBM Corp. 2000, 2006 167

|
|
|
|
|
|
|

v AUTODB (physical DBD of the auto database)

v EMPDB2 (physical DBD of the employee database)

v SINDEX11 (first secondary index)

v SINDEX22 (second secondary index)

v AUTOLDB (logical DBD of the auto database)

v EMPLDB2 (logical DBD of the employee database)

The following sample job moves these DBDs to PDS members:

//name JOB parameters

//MV2PDS1 EXEC PGM=IKJEFT01

//SYSPRINT DD SYSOUT=*

//SYSTSNT DD SYSOUT=*

//O1 DD DISP=SHR,DSN=hlq.dbdsrc(AUTODB)

//I1 DD PATH=’path/AUTODB’

//O2 DD DISP=SHR,DSN=hlq.dbdsrc(EMPDB2)

//I2 DD PATH=’path/EMPDB2’

//O3 DD DISP=SHR,DSN=hlq.dbdsrc(SINDEX11)

//I3 DD PATH=’path/SINDEX11’

//O4 DD DISP=SHR,DSN=hlq.dbdsrc(SINDEX22)

//I4 DD PATH=’path/SINDEX22’

//O5 DD DISP=SHR,DSN=hlq.dbdsrc(AUTOLDB)

//I5 DD PATH=’path/AUTOLDB’

//O6 DD DISP=SHR,DSN=hlq.dbdsrc(EMPLDB2)

//I6 DD PATH=’path/EMPLDB2’

//SYSTIN DD*

OCOPY INDD(I1) OUTDD(01)

OCOPY INDD(I2) OUTDD(02)

OCOPY INDD(I3) OUTDD(03)

OCOPY INDD(I4) OUTDD(04)

OCOPY INDD(I5) OUTDD(05)

OCOPY INDD(I6) OUTDD(06)

/*

2. Generate the DBDs using the DBDGEN utility:

a. Move the JCL file named AUTDBD to a partitioned data set from which it

can be run.

b. Edit the JCL statements as necessary.

c. Run the job, which executes the DBDGEN procedure.
3. Move the following PSB source files (HFS) to your PSB source library (PDS

members):

v AUTPSBAL (for loading the auto database)

v AUTPSBEL (for loading the employee database)

v AUTPSB11 (for processing the databases)

The following example moves these PSBs to PDS members:

//name JOB parameters

//MV2PDS2 EXEC PGM=IKJEFT01

//SYSPRINT DD SYSOUT=*

//SYSTSNT DD SYSOUT=*

//O1 DD DISP=SHR,DSN=hlq.psbsrc(AUTPSBAL)

//I1 DD DISP=SHR,PATH=’path/AUTPSBAL’

//O2 DD DISP=SHR,PATH=’path/AUTPSBEL’

//O3 DD DISP=SHR,DSN=hlq.psbsrc(AUTPSB11)

//I3 DD DISP=SHR,PATH=’path/AUTPSB11’

//SYSTIN DD*

OCOPY INDD(I1) OUTDD(01)

OCOPY INDD(I2) OUTDD(02)

OCOPY INDD(I3) OUTDD(03)

/*

4. Generate the PSBs by using the PSBGEN utility:

Loading the Dealership Sample Databases

168 IMS Java Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

a. Move the JCL file named AUTPSB to a partitioned data set from which it

can be run.

b. Edit the JCL statements if necessary.

c. Run the job, which executes the PSBGEN procedure.
5. Generate the ACBs for the IMS system that are used when running the sample

application:

a. Ensure that DFSACBCP is available in a partitioned data set.

b. Move the JCL file named AUTACB to a partitioned data set from which it

can be run.

c. Edit the JCL statements if necessary.

d. Run the job, which executes the ACBGEN procedure.
6. Initial load the databases:

a. Move the JCL files named AUTLOAD and IV3H103A to a partitioned data

set from which they can be run.

The following sample job moves AUTLOAD and IV3H103A to PDS

members:

//name JOB parameters

//MV2PDS3 EXEC PGM=IKJEFT01

//SYSPRINT DD SYSOUT=*

//SYSTSNT DD SYSOUT=*

//O1 DD DISP=SHR,DSN=hlq.library(AUTLOAD)

//I1 DD DISP=SHR,PATH=’path/AUTLOAD’

//O2 DD DISP=SHR,DSN=hlq.library(IV3H103A)

//I2 DD DISP=SHR,PATH=’path/IV3H103A’

//SYSTIN DD*

OCOPY INDD(I1) OUTDD(01)

OCOPY INDD(I2) OUTDD(02)

/*

b. Edit the JCL statements by adding the high-level qualifiers to the data set

names and to the volume information, and my making any other necessary

changes required by your installation.

c. Run the AUTLOAD job, which is an IMS batch job. System data sets must

be available and the control region must not be running. This job completes

the following steps:

v Scratches old database data sets.

v Allocates new database data sets.

v Loads the physical AUTDB and EMPDB2 databases.

v Resolves and updates logical relationships.

v Builds the two secondary indexes.

Because no data exists in the databases yet, the final three steps are null

operations and therefore, 0004 return codes are acceptable.
7. Add data to the initialized databases:

a. Move the JCL file named AUTSEED to a partitioned data set from which it

can be run.

The following sample job moves AUTSEED to a PDS member:

//name JOB parameters

//MV2PDS4 EXEC PGM=IKJEFT01

//SYSPRINT DD SYSOUT=*

//SYSTSNT DD SYSOUT=*

//O1 DD DISP=SHR,DSN=hlq.library(AUTSEED)

Loading the Dealership Sample Databases

Appendix A. Preparing to Run the Dealership Samples 169

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

//I1 DD DISP=SHR,PATH=’path/AUTSEED’

//SYSTIN DD*

OCOPY INDD(I1) OUTDD(01)

/*

b. Edit the JCL statements in AUTSEED if necessary.

c. Run the AUTSEED job, which executes the DFSDDLT0 procedure. This job

completes the following steps:

v Deletes the root segments, if present.

v Adds roots and dependent segments to the database using the AUTPSB11

PSB.

You can run this job repeatedly without rerunning the AUTLOAD job.
8. Optionally, confirm that the databases loaded correctly:

a. Move the JCL file named AUTLIST to a partitioned data set from which it

can be run.

The following sample job moves AUTLIST to a PDS member:

name JOB parameters

//MV2PDS5 EXEC PGM=IKJEFT01

//SYSPRINT DD SYSOUT=*

//SYSTSNT DD SYSOUT=*

//O1 DD DISP=SHR,DSN=hlq.library(AUTLIST)

//I1 DD DISP=SHR,PATH=’path/AUTLIST’

//SYSTIN DD*

OCOPY INDD(I1) OUTDD(01)

/*

b. Edit the JCL statements if necessary.

c. Run the job, which executes the DFSDDLT0 procedure. This job lists

segments to the database using the AUTPSB11 PSB.
9. Compile the dynamic allocation members for the databases:

a. Move the JCL file named AUTODA to a partitioned data set from which it

can be run.

The following sample job moves AUTODA to a PDS member:

//name JOB parameters

//MV2PDS6 EXEC PGM=IKJEFT01

//SYSPRINT DD SYSOUT=*

//SYSTSNT DD SYSOUT=*

//O1 DD DISP=SHR,DSN=hlq.library(AUTODA)

//I1 DD DISP=SHR,PATH=’path/AUTODA’

//SYSTIN DD*

OCOPY INDD(I1) OUTDD(01)

/*

b. Edit the JCL statements if necessary.

c. Run the job.

Loading the Dealership Sample Databases

170 IMS Java Guide and Reference

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

Appendix B. SQL Keywords

Because the IMS Java SQL parser supports portable SQL, you cannot use any SQL

keywords as Java aliases for PCBs, segments, or fields. When you define Java

aliases, do not use an SQL keyword. If a PCB, segment, or field has the same name

as an SQL keyword, you must explicitly define a different Java alias for it. For

information on defining Java aliases, see IMS Version 9: Utilities Reference: System.

If you use an SQL keyword as a name of a PCB, segment, or field, your application

program receives an error when it attempts an SQL query.

The following SQL keywords cannot be used as PCB, segment, or field names:

 ABORT

 ANALYZE

 AND

 ALL

 ALLOCATE

 ALTER

 AND

 ANY

 ARE

 AS

 ASC

 ASSERTION

 AT

 AVG

 BEGIN

 BETWEEN

 BINARY

 BIT

 BOOLEAN

 BOTH

 BY

 CASCADE

 CAST

 CHAR

 CHARACTER

 CHECK

 CLOSE

 CLUSTER

 COLLATE

 COLUMN

 COMMIT

 CONSTRAINT

 COPY

 COUNT

 CREATE

 CROSS

 CURRENT

 CURSOR

 DECIMAL

 DECLARE

 DEFAULT

 DELETE

 DESC

 DISTINCT

 DO

 DOUBLE

 DROP

 END

 EXECUTE

 EXISTS

 EXPLAIN

 EXTRACT

 EXTEND

 FALSE

 FIRST

 FLOAT

 FOR

 FOREIGN

 FROM

 FULL

 GRANT

 GROUP

 HAVING

 IN

 INNER

 INSERT

 INT

 INTEGER

 INTERVAL

 INTO

 IS

 JOIN

 LAST

 LEADING

 LEFT

 LIKE

 LISTEN

 LOAD

 LOCAL

 LOCK

 MAX

 MIN

 MOVE

 NAMES

 NATIONAL

 NATURAL

 NCHAR

 NEW

 NO

 NONE

 NOT

 NOTIFY

 NULL

 NUMERIC

 ON

 OR

 ORDER

 OUTER

 PARTIAL

 POSITION

 PRECISION

 PRIMARY

 PRIVILEGES

 PROCEDURE

 PUBLIC

 REAL

 REFERENCES

 RESET

 REVOKE

 RIGHT

 ROLLBACK

 SELECT

 SET

 SETOF

 SHOW

 SMALLINT

 SUBSTRING

 SUM

 TABLE

 TO

 TRAILING

 TRANSACTION

 TRIM

 TRUE

 UNION

 UNIQUE

 UNLISTEN

 UNTIL

 UPDATE

 USER

 USING

 VACUUM

 VALUES

 VARCHAR

 VARYING

 VERBOSE

 VIEW

 WHERE

 WITH

 WORK

© Copyright IBM Corp. 2000, 2006 171

172 IMS Java Guide and Reference

Appendix C. IMS Java Hierarchical Database Interface

The IMS Java hierarchical database interface is more closely related to the standard

DL/I database call interface that is used with other languages, and provides a

lower-level access to IMS database functions than the JDBC interface. Using IMS

Java hierarchical database interface, you can build segment search arguments

(SSAs) and call the functions of the DLIConnection object to read, insert, update, or

delete segments. The application has full control to navigate the segment hierarchy.

Although you can use the IMS Java hierarchical database interface to access IMS

data, it is recommended that you use JDBC. However, you can use this package if

you need more controlled access than the higher-level JDBC package provides.

Related Reading: For detailed information about the classes in the IMS Java

hierarchical database interface, see the IMS Java API Specification. Go to the IMS

Web site at www.ibm.com/ims and link to the IMS Java page.

The following topics provide additional information:

v “Application Programming Using the DLIConnection Object”

v “Creating a DLIConnection Object”

v “Creating an SSAList Object” on page 174

v “Accessing IMS Data Using SSAs” on page 174

Application Programming Using the DLIConnection Object

To use a DLIConnection object to read, update, insert, and delete segment instances,

your application must:

1. Acquire a DLISegment object for each segment using the cloneSegment method

on the DLIDatabaseView subclass.

2. Provide a subclass of DLIDatabaseView that defines the segment hierarchy

accessed by the application.

3. Create a DLIConnection object to access the database.

4. Create an SSAList object.

5. Invoke the database access methods of the DLIConnection class to read, write,

or delete segments from the database.

Create the required classes by running the DLIModel utility (see IMS Version 9:

Utilities Reference: System).

Creating a DLIConnection Object

You must create aDLIConnection object in one of two ways:

v By providing a DLIDatabaseView object

v By providing the fully-qualified name of the DLIDatabaseView subclass

When you code directly to a DLIConnection object, it is faster to create and pass the

DLIDatabaseView object because it simplifies finding the class by its name. See

below how to create a DLIConnection object:

DealerDatabaseView dealerView = new DealerDatabaseView();

DLIConnection connection = DLIConnection.createInstance(dealerView);

© Copyright IBM Corp. 2000, 2006 173

Creating an SSAList Object

SSAs identify the segment to which a DL/I call applies. Because of the hierarchical

structure of IMS databases, you often have to specify several levels of SSAs to

access a segment at a low level in the hierarchy. An SSAList object is a collection of

one or more SSA objects. Use the SSAList object when you make DL/I calls. The

SSAList object is also where you specify which database that you want to access

within a DLIDatabaseView object by providing the PCB reference name.

Figure 44 shows how to create an SSAList object that will find all “Alpha” cars that

were made in 2004:

Accessing IMS Data Using SSAs

After you create an SSAList object, you can issue database calls by invoking the

access method on the DLIConnection object and passing in the following:

v The SSAList object.

v An instance of the segment, which is the intended target of the database call

results.

Get the passed-in instance of the segment by calling the cloneSegment method on

the DLIDatabaseView subclass.

The following example how to call and print the results using the SSAList object

that was built in “Creating an SSAList Object”:

DLISegment model = dealerView.cloneSegment("Model");

 boolean recordRead = connection.getUniqueSegment(model, modelSSAList);

 while (recordRead) {

 System.out.println("Car Name: " + model.getString("ModelName"));

 recordRead = connection.getNextSegment(model, modelSSAList);

 }

// Create an SSAList

SSAList modelSSAList = SSAList.createInstance("DealershipDB");

// Construct an unqualified SSA for the Dealer segment

SSA dealerSSA = SSA.createInstance("Dealer");

// Construct a qualified SSA for the Model segment

SSA modelSSA = SSA.createInstance("Model", "CarMake", SSA.EQUALS, "Alpha");

// Add an additional qualification statement

modelSSA.addQualification(SSA.AND, "CarYear", SSA.EQUALS, "1989");

// Add the SSAs to the SSAList

modelSSAList.addSSA(dealerSSA);

modelSSAList.addSSA(modelSSA);

Figure 44. Creating an SSAList Object

Creating an SSAList Object

174 IMS Java Guide and Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2000, 2006 175

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

176 IMS Java Guide and Reference

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

 BookManager

DB2

CICS

IBM

IMS

IMS/ESALibrary Reader

MVS

OS/390

QMF

RACF

Rational Rose

WebSphere

z/OS

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc., in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 177

|
|
|
|
|
|

178 IMS Java Guide and Reference

Bibliography

This bibliography includes all the publications

cited in this book, including the publications in

the IMS library.

 DB2 Universal Database for OS/390 and z/OS:

Application Programming Guide and Reference for

Java, SC26-9932

 Enterprise COBOL for z/OS and OS/390:

Programming Guide, SC27-1412

 IBM Developer Kit for OS/390, Java 2 Technology

Edition: New IBM Technology featuring Persistent

Reusable Java Virtual Machines, SC34-6034

 z/OS: UNIX System Services Command Reference,

SA22-7802

 z/OS: UNIX System Services File System Interface

Reference, SA22-7808

 z/OS: UNIX System Services User’s Guide,

SA22-7801

 CICS Transaction Server for z/OS: CICS System

Definition Guide, SC34-5988

 WebSphere Application Server V4.0.1 for z/OS and

OS/390 : Assembling Java 2 Platform, Enterprise

Edition (J2EE) Applications, SA22-7836

 WebSphere Application Server V4.0.1 for z/OS and

OS/390 : System Management User Interface,

SA22-7838

IMS Version 9 Library

 Title Acronym Order

number

IMS Version 9: Administration

Guide: Database Manager

ADB SC18-7806

IMS Version 9: Administration

Guide: System

AS SC18-7807

IMS Version 9: Administration

Guide: Transaction Manager

ATM SC18-7808

IMS Version 9: Application

Programming: Database

Manager

APDB SC18-7809

IMS Version 9: Application

Programming: Design Guide

APDG SC18-7810

IMS Version 9: Application

Programming: EXEC DLI

Commands for CICS and IMS

APCICS SC18-7811

IMS Version 9: Application

Programming: Transaction

Manager

APTM SC18-7812

Title Acronym Order

number

IMS Version 9: Base Primitive

Environment Guide and

Reference

BPE SC18-7813

IMS Version 9: Command

Reference

CR SC18-7814

IMS Version 9: Common Queue

Server Guide and Reference

CQS SC18-7815

IMS Version 9: Common

Service Layer Guide and

Reference

CSL SC18-7816

IMS Version 9: Customization

Guide

CG SC18-7817

IMS Version 9: Database

Recovery Control (DBRC)

Guide and Reference

DBRC SC18-7818

IMS Version 9: Diagnosis

Guide and Reference

DGR LY37-3203

IMS Version 9: Failure Analysis

Structure Tables (FAST) for

Dump Analysis

FAST LY37-3204

IMS Version 9: IMS Connect

Guide and Reference

CT SC18-9287

IMS Version 9: IMS Java Guide

and Reference

JGR SC18-7821

IMS Version 9: Installation

Volume 1: Installation

Verification

IIV GC18-7822

IMS Version 9: Installation

Volume 2: System Definition

and Tailoring

ISDT GC18-7823

IMS Version 9: Master Index

and Glossary

MIG SC18-7826

IMS Version 9: Messages and

Codes, Volume 1

MC1 GC18-7827

IMS Version 9: Messages and

Codes, Volume 2

MC2 GC18-7828

IMS Version 9: Open

Transaction Manager Access

Guide and Reference

OTMA SC18-7829

IMS Version 9: Operations

Guide

OG SC18-7830

IMS Version 9: Release

Planning Guide

RPG GC17-7831

IMS Version 9: Summary of

Operator Commands

SOC SC18-7832

IMS Version 9: Utilities

Reference: Database and

Transaction Manager

URDBTM SC18-7833

IMS Version 9: Utilities

Reference: System

URS SC18-7834

© Copyright IBM Corp. 2000, 2006 179

Supplementary Publications

 Title Order number

IMS Connector for Java 2.2.2 and 9.1.0.1

Online Documentation for WebSphere

Studio Application Developer Integration

Edition 5.1.1

SC09-7869

IMS Version 9 Fact Sheet GC18-7697

IMS Version 9: Licensed Program

Specifications

GC18-7825

Publication Collections

 Title Format Order

number

IMS Version 9 Softcopy Library CD LK3T-7213

IMS Favorites CD LK3T-7144

Licensed Bill of Forms (LBOF):

IMS Version 9 Hardcopy and

Softcopy Library

Hardcopy

and CD

LBOF-7789

Unlicensed Bill of Forms

(SBOF): IMS Version 9

Unlicensed Hardcopy Library

Hardcopy SBOF-7790

OS/390 Collection CD SK2T-6700

z/OS Software Products

Collection

CD SK3T-4270

z/OS and Software Products

DVD Collection

DVD SK3T-4271

Accessibility Titles Cited in This

Library

 Title Order number

z/OS V1R1.0 TSO Primer SA22-7787

z/OS V1R5.0 TSO/E User’s Guide SA22-7794

z/OS V1R5.0 ISPF User’s Guide, Volume

1

SC34-4822

180 IMS Java Guide and Reference

Index

A
accessibility xviii

keyboard xviii

shortcut keys xviii

aggregate functions 138

AS 138

ASC 138

AVG 138

COUNT 138

data types 139

DESC 138

GROUP BY 138

MAX 138

MIN 138

ORDER BY 138

renaming 139

result set column 139

result set type 139

SUM 138

AND operator
IMS rules 137

Apache open source XML libraries
about 3

downloading 3

applications
message processing, building 17

programming 173

AS keyword 138, 139

ASC keyword 138

asterisk operator 133

AVG keyword 138

B
BIGINT data type 144

BINARY data type 144

BIT data type 144

byte data type 144

C
CHAR data type 144

CICS
_CXX_LSYSLIB environment

variable 121

application
sample 124

applications
IVP 122

running 125

writing 125

CICSPSB DLL 121

configuring for IMS Java 121

DFHJVMPR environment

member 122

dfjjvmpr.props 122

IMS Java overview 121

IVP 122

LIBPATH variable 122

Makefile 121

CICS (continued)
running applications 125

sample application 124

writing applications 125

CLASSPATH ENVAR keyword 112

Clob interface
result set 141

retrieveXML 140

COBOL
See also Enterprise COBOL

copybook types 146

mapping to IMS 146

columns
fields, compared to 127

relational representation, in 128

com.ibm.connector2.ims.db package 5

com.ibm.ims.application package 5

com.ibm.ims.base package 5

com.ibm.ims.db package 5

com.ibm.ims.db.DLIDatabaseView

class 148

com.ibm.ims.rds package 5

com.ibm.ims.rds.host package 6

com.ibm.ims.rds.util package 6

com.ibm.ims.xms package 6

Connection object 150

conversational transactions 22

copybook types 146

COUNT keyword 138

custom service, installing 41, 43

D
data types

aggregate functions 139

conversion 144

mapped to COBOL 146

databases
describing to IMS Java 148

DATE data type 144

DB2 Recoverable Resource Manager

Services attachment facility 16

DB2 UDB for z/OS access
application programming 34

committing work 34

drivers 34

FSDB2AF DD statement 17

IMS databases, compared to 34

JBP region, from a
configuring 16

programming model 30

JMP region, from a
configuring 16

programming model 21

rolling back work 34

RRSAF 16

DB2 UDB for z/OS stored procedures
developing 119

environment variables 112

IVP 113

JAVAENV data set 111

DB2 UDB for z/OS stored procedures

(continued)
overview with IMS Java 111

running 117

sample application
running 115

system requirements 111

DB2_HOME ENVAR keyword 112

DB2Auto application
running 115

DB2AutoClient application
running 115

db2sqljjdbc.properties 115

DBD (database description), sample 148

DD statements
DFSDB2AF 17

DFSRESLB 113

JAVAERR 11

JAVAOUT 11

STEPLIB 11

dealership sample application
DB2 UDB for z/OS stored

procedures 115

dealership samples
DBD 148

PSB 148

DEBUG=Y
for JVM debugging 165

debugging
XMLTrace 162

DELETE keyword 135

example 135

deployment descriptor
example 73

requirements for IMS Java 72

DESC keyword 138

dfjjvmpr.props file 122

DFSJMP procedure 11

DFSJVMEV member
DB2 JDBC driver 17

IVP changes 11

DFSJVMMS
DB2 JDBC driver 17

DFSJVMMS member
IVP changes 11

DFSRESLB DD statement 113

disability xviii

DL/I data, accessing 174

DL/I status codes
mapping to exceptions 161

DLIConnection
creating 173

DLIConnection class 161

DLIDatabaseView class 148

DLIDriver
loading 150

registering 151

DLIException class 161

DLIModel IMS Java Report 149

DLIModel utility
DLIModel IMS Java Report 149

© Copyright IBM Corp. 2000, 2006 181

DLIModel utility (continued)
using 148

DLITypeInfoList class 25

DOUBLE data type 144

driver
registering with DriverManager 151

DriverManager facility 142

E
EJB (Enterprise JavaBean)

deployment descriptor

requirements 72

Enterprise COBOL 31

back end 31

implementing 32

CALL statement 31

compiler 32

front end 31, 32

JVM, locating 33

main method 32

object oriented syntax 31

performance 33

exceptions
description 161

IMSException object
getAIB method 161

getFunction method 161

getStatusCode method 161

mapping to DL/I status codes 161

F
fields

columns, compared to 127

default value 135

in SQL queries 130

segment qualified 134

float data type 144

FROM keyword 136

joins 136

FSDB2AF DD statement 17

G
getAIB method 161

getFunction method 161

getNextException 162

getStatusCode method 161

GROUP BY keyword 138

H
HFS (Hierarchic File System)

allocating data set for 2

mounting directory 2

Hierarchic File System (HFS)
allocating data set for 2

mounting directory 2

hierarchical database
example 128

relational database, compared to 127

High Performance Java (HPJ) 6

HPJ (High Performance Java) 6

I
IBM Developer Kit for OS/390, Java 2

Technology Edition 1

importing packages 151

IMS distributed JDBC resource adapter,

installing 81, 83

IMS Java 6

administering 4

class library 5

data type support 144

exceptions 161

IMS Java API Specification 6

installing 2

DFSJSMKD job 2

DFSJSMKDR REXX script 2

HFS data set 2

HFS mount point 2

SMP/E 2

JDBC application 150

JDBC support 1

overview 1

packages 5, 6

com.ibm.connector2.ims.db 5

com.ibm.ims.application 5

com.ibm.ims.base 5

com.ibm.ims.db 5

com.ibm.ims.rds 5

com.ibm.ims.rds.host 6

com.ibm.ims.rds.util 6

com.ibm.ims.xms 6

IMS Java API Specification 6

problem determination 161

Redbooks 6

remote database services
about 75

components 75

restrictions 6

supported environments 1

system requirements 1

IMS Java API Specification 6

IMS Java hierarchical database interface
about 1

using 173

IMS JDBC resource adapter,

installing 40, 43

IMSException class 161

IMSFieldMessage 26

IMSFieldMessage class
subclassing 18

IMSMessageQueue 162

input messages, defining 18

INSERT keyword 135

example 135

WHERE clause 135

installation verification programs (IVPs)
CICS 122

DB2 UDB for z/OS stored

procedures 113

JBP region 12

JMP region 10

WebSphere Application Server

(non-z/OS) 84, 88

WebSphere Application Server for

z/OS 45, 48

installing IMS Java
DFSJSMKD job 2

DFSJSMKDR REXX script 2

installing IMS Java (continued)
HFS data set 2

HFS mount point 2

SMP/E 2

int data type 144

INTEGER data type 144

IVPs (installation verification programs)
CICS 122

DB2 UDB for z/OS stored

procedures 113

JBP region 12

JMP region 10

WebSphere Application Server

(non-z/OS) 84, 88

WebSphere Application Server for

z/OS 45, 48

J
Java batch processing (JBP) regions

DB2 UDB for z/OS access
application programming 34

configuring 16

programming model 30

description 9

IVP 12

programming models 29

restart 28

symbolic checkpoint 28

Java Batch Processing (JBP) regions
program switching 35

Java data types 144

Java message processing (JMP) regions
DB2 UDB for z/OS access

application programming 34

configuring 16

programming model 21

description 9

IVP 10

DFSJMP procedure 11

DFSJVMEV member 11

DFSJVMMS member 11

JVM.out file 11

programming models 20

Java Message Processing (JMP) regions
program switching 35

JAVA_HOME ENVAR keyword 112

java.math.BigDecimal 144

java.sql.Clob
See Clob interface

java.sql.Connection interface 142

java.sql.DatabaseMetaData interface 142

java.sql.Date 144

java.sql.Driver interface 142

java.sql.PreparedStatement interface 143

java.sql.ResultSet interface 143

java.sql.ResultSetMetaData interface 143

java.sql.Statement interface 143

java.sql.Time 144

java.sql.Timestamp 144

JAVAENV data set
creating 111

sample 112

JAVAERR DD statement 11

JAVAOUT DD statement 11

182 IMS Java Guide and Reference

JBP (Java batch processing) regions
DB2 UDB for z/OS access

application programming 34

configuring 16

programming model 30

description 9

IVP 12

program switching 35

programming models 29

restart 28

symbolic checkpoint 28

JDBC
connecting to IMS database 151

Connection object, returning 151

data types 144

explanation 127

importing packages 151

interfaces
java.sql.Connection 142

java.sql.DatabaseMetaData 142

java.sql.Driver 142

java.sql.PreparedStatement 143

java.SQL.ResultSet 143

java.sql.ResultSetMetaData 143

java.sql.Statement 143

interfaces, limitations 142

jdbc:dli 151

sample application 150

SQL keywords, supported 130

using 150

writing an application 150

XML, extension for 139

JDBC drivers
DB2 JDBC/SQLJ 1.2 driver 16

DB2 JDBC/SQLJ 2.0 driver 16

DB2 Universal JDBC driver 16

JMP (Java message processing) regions
DB2 UDB for z/OS access

application programming 34

configuring 16

programming model 21

description 9

IVP 10

DFSJMP procedure 11

DFSJVMEV member 11

DFSJVMMS member 11

JVM.out file 11

program switching 35

programming models 20

JMP applications
message handling

conversational transactions 22

multi-segment messages 24

multiple input messages 26

repeating structures 25

programming models 20

joining segments 133

JVM, debugging
DEBUG=Y 165

log messages 165

reset trace events 165

L
LIBPATH ENVAR keyword 112

long data type 144

M
main() method 19

MAX keyword 138

message processing application
building 17

messages
input, defining 18

multi-segment 24

output, defining 18

repeating structures
defining in IMS Java 25

SPA 22

subsequent 24

MIN keyword 138

multi-segment messages 24

O
object

DLIConnection, creating 173

OR operator
IMS rules 137

ORDER BY keyword 138

output messages, defining 18

P
PACKEDDECIMAL data type 144

path call 133

Persistent Reusable Java Virtual

Machine 1

prepared statements
java.sql.PreparedStatement

interface 143

PreparedStatement object 150

Problem Determination 161

program switches 35

programming models
JBP applications

symbolic checkpoint and

restart 29

with rollback 30

without rollback 29

JMP applications 20

DB2 UDB for z/OS data

access 21

IMS data access 21

with rollback 21

without rollback 20

WebSphere Application Server

(non-z/OS) applications
bean-managed EJBs 69

container-managed EJBs 71

servlets 71

WebSphere Application Server for

z/OS applications
bean-managed EJBs 69

container-managed EJBs 71

servlets 71

PSB (program specification block)
sample 148

R
Recoverable Resource Manager Services

attachment facility (RRSAF) 16

relational database
hierarchical database, compared

to 127

remote database services
configuring 78, 81

repeating structures
accessing 25

DLITypeInfoList class 25

dotted notation 25

sample output message 25

res-sharing-scope element 72

res-type element 72

resource-ref element
example 73

requirements for IMS Java 72

ResultSet
aggregate data types 139

iterating 150

TYPE_FORWARD_ONLY 139

TYPE_SCROLL_INSENSITIVE 139

ResultSet.getAsciiStream method 143

ResultSet.getCursorName method 143

ResultSet.getUnicodeStream method 143

rows
relational representation, in 130

segment instances, compared to 127

RRSAF (Recoverable Resource Manager

Services attachment facility) 16

S
sample applications

DB2 UDB for z/OS stored

procedures 115

samples
message processing application 17

segments
in SQL queries 130

tables, compared to 127

segments, selecting multiple 133

SELECT keyword
asterisk operator 133

description 131

example 131

example query 130

retrieveXML 134

selecting all fields in a segment 133

selecting multiple segments 133

setModifiableAlternatePCB(String)

method 35

short data type 144

shortcut keys
keyboard xviii

SMALLINT data type 144

SPA 22

message, defining 22

SPA (scratch pad area) 22

conversational transactions for IMS

Java 24

SQL (Structured Query Language)
aggregate functions 138

argument types 139

result types 139

Index 183

SQL (Structured Query Language)

(continued)
AS 138, 139

ASC 138

AVG 138

COUNT 138

DELETE 135

DESC 138

example query 130

FROM 136

GROUP BY 138

IMS requirements for 130

INSERT 135

keyword list 171

MAX 138

MIN 138

ORDER BY 138

PCB-qualified query 136

prepared statements 144

recommendations
PCB-qualified query 136

segment-qualified fields 134

segment-qualified fields 134

SELECT keyword requirements 131

SUM 138

supported keywords 130

UPDATE 136

WHERE 137

SQLException 162

SQLstate 162

SSA (segment search argument) 133

WHERE clause, relation to 137

SSAList
creating an 174

DL/I data, accessing 174

Statement object
retrieving 150

status codes
mapping 161

stored procedures
See DB2 UDB for z/OS stored

procedures

String data type
boolean data type 144

SUM keyword 138

syntax diagram
how to read xiii

system requirements
DB2 UDB for z/OS stored

procedures 111

T
tables

relational representation, in 128

segments, compared to 127

TIME data type 144

TIMESTAMP data type 144

TINYINT data type 144

TMSUFFIX ENVAR keyword 112

tracing
IMS Java library methods 164

J2EE 63, 67, 107

Trace statements, adding 164

WebSphere Application Server for

z/OS 63, 67, 107

XMLTrace 162

transactions
conversational 22

types
data, mapped to COBOL 146

supported 144

U
UPDATE keyword 136

example 136

V
VARCHAR data type 144

W
WebSphere Application Server

(non-z/OS)
application, installing 86, 89

applications
IVP 84, 88

sample 92, 96

configuring
data source, installing 78, 82

EAR file, installing on server

side 79, 83

IMS distributed JDBC resource

adapter, installing 81, 83

prerequisites 78, 81

data source, installing 85, 88, 101,

105

deployment descriptor 72

downloading IMS Java files 77

EJB
client side 109

server side 109

EJB considerations 108

IVP 84, 88

application, installing on the client

side 86, 89

data source, installing on the client

side 85

prerequisites 84, 88

testing 87, 90

running your application
application, installing 102, 106

data source, installing 101, 105

prerequisites 100, 104

sample application
application, installing 93, 98

data source, installing 92, 96

prerequisite 92, 96

testing dealership sample 95, 99

testing phonebook sample 95, 99

tracing with XMLTrace 103

WebSphere Application Server for z/OS
applications 37

IVP 45, 48

samples 52, 56

classpath, setting 60, 65

configuring
access to IMS 39, 42

custom service, installing 41, 43

IMS JDBC resource adapter,

installing 40, 43

WebSphere Application Server for z/OS

(continued)
configuring (continued)

prerequisites 39, 42

deployment descriptor 72

IVP 45, 48

application, installing 46, 50

data source, installing 45, 49

prerequisites 45, 48

testing 48, 50

overview 37

restrictions
container-managed signon 72

java.sql.Connection object 72

shared connections 72

running your application
application, installing 62, 67

classpath, setting 60, 65

data source, installing 60, 65

prerequisites 60, 65

sample applications
application, installing 54, 57

data source, installing 52, 56

prerequisites 52, 56

testing 55, 58

server.policy file 38, 41, 44

tracing 63, 67, 107

WHERE keyword 137

fields, valid 137

operators, valid 137

SSAs, relation to 137

X
xalan.jar 3

Xalan–Java version 2.6.0 3

xercesImpl.jar 3

XML (Extensible Markup Language)
composition 153

data-centric documents 155

decomposed storage mode 154

IMS, and 153

intact storage mode
about 156

base segment 156

database for 156

DBD example 157

overflow segment 156

side segment 157

JDBC extensions for 139

legacy databases, and 155

open source files for IMS Java 3

overview 153

retrieveXML 140

Clob interface 141

example 140

storeXML 141

example 142

SQL syntax 141

storing 153

supported environments 160

type representation 159

UDFs 139

xalan.jar 3

Xalan–Java version 2.6.0 3

xercesImpl.jar 3

xml-apis.jar 3

184 IMS Java Guide and Reference

XML schema
data types 159

overview 159

xml-apis.jar 3

XMLTrace
application 164

enabling 163

WebSphere Application Server

(non-z/OS) applications 103

XMLTrace class 162

XMLTrace.enable 163

XMLTrace.IMS Java library methods 164

XMLTrace.libTraceLevel 164

Z
ZONEDECIMAL data type 144

Index 185

186 IMS Java Guide and Reference

����

Program Number: 5655-J38

Printed in USA

SC18-7821-05

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

IM
S

IM
S

Ja
va

G

ui
de

an

d
R

ef
er

en
ce

Ve

rs
io

n
9

	Contents
	Figures
	Tables
	About This Book
	Prerequisite Knowledge
	IBM Product Names Used in This Information
	How to Read Syntax Diagrams
	How to Send Your Comments

	Summary of Changes
	Changes to the Current Edition of This Book for IMS Version 9
	Changes to This Book for IMS Version 9
	Library Changes for IMS Version 9
	New and Revised Titles
	Organizational Changes
	Terminology Changes
	Accessibility features for IMS
	Accessibility features
	Keyboard navigation
	IBM and accessibility

	Chapter 1. Getting Started with IMS Java
	IMS Java System Requirements
	Installing IMS Java
	Downloading Apache Open Source XML Libraries
	Administering IMS Java
	IMS Java Class Library Summary
	General Restrictions for Applications
	Where to Find More Information about IMS Java

	Chapter 2. JMP and JBP Applications
	Running the IMS Java IVP in a JMP Region
	Running the IMS Java IVP in a JBP Region
	Running the IMS Java Sample Application from a JMP Region
	Configuring JMP and JBP Regions for DB2 UDB for z/OS Database Access
	Developing JMP Applications
	Subclassing the IMSFieldMessage Class to Define Input Messages
	Subclassing the IMSFieldMessage Class to Define Output Messages
	Implementing the main Method
	JMP Programming Models
	JMP Application Without Rollback
	JMP Application that Uses Rollback
	JMP Application that Accesses IMS or DB2 UDB for z/OS Data

	Additional Message Handling Considerations for JMP Applications
	Conversational Transactions
	Defining a SPA Message in a Conversational Program
	Conversational Transaction Sequence of Events

	Handling Multi-Segment Messages
	Coding and Accessing Messages with Repeating Structures
	Flexible Reading of Multiple Input Messages

	Developing JBP Applications
	Symbolic Checkpoint and Restart
	JBP Programming Models
	JBP Application without Rollback
	JBP Application with Symbolic Checkpoint and Restart
	JBP Application using Rollback
	JBP Application that Accesses DB2 UDB for z/OS or IMS Data

	Enterprise COBOL Interoperability with JMP and JBP Applications
	Enterprise COBOL as a Back-End Application in a JMP or JBP Region
	Enterprise COBOL as a Front-End Application in a JMP or JBP Region
	Performance Consideration for OO COBOL in a JMP or JBP Region
	Recommendation against Accessing Databases with Both Java and COBOL

	Accessing DB2 UDB for z/OS Databases from JMP or JBP Applications
	Program Switching in JMP and JBP Applications
	Immediate Program Switching for JMP and JBP Applications
	Deferred Program Switching for Conversational JMP Applications

	Chapter 3. WebSphere Application Server for z/OS Applications
	Configuring WebSphere Application Server for z/OS for IMS Java
	Configuring WebSphere Application Server V5 for z/OS
	Configuring WebSphere Application Server V5 for z/OS to Access IMS
	Adding the Required XML Files to the WebSphere Application Server V5 for z/OS Classpath
	Installing the IMS JDBC Resource Adapter on WebSphere Application Server V5 for z/OS
	Installing the Custom Service on WebSphere Application Server V5 for z/OS

	Configuring WebSphere Application Server V6 for z/OS
	Configuring WebSphere Application Server V6 for z/OS to Access IMS
	Installing the IMS JDBC Resource Adapter on WebSphere Application Server V6 for z/OS
	Installing the Custom Service on WebSphere Application Server V6 for z/OS

	Running the IMS Java IVP on WebSphere Application Server for z/OS
	Running the IMS Java IVP on WebSphere Application Server V5 for z/OS
	Installing the Data Source for the IMS Java IVP on WebSphere Application Server V5 for z/OS
	Installing the IMS Java IVP on WebSphere Application Server V5 for z/OS
	Adding the XML Files to the IVP Classpath on WebSphere Application Server V5 for z/OS
	Testing the IMS Java IVP on WebSphere Application Server V5 for z/OS

	Running the IMS Java IVP on WebSphere Application Server V6 for z/OS
	Installing the Data Source for the IMS Java IVP on WebSphere Application Server V6 for z/OS
	Installing the IMS Java IVP on WebSphere Application Server V6 for z/OS
	Testing the IMS Java IVP on WebSphere Application Server V6 for z/OS

	Running the IMS Java Sample Applications on WebSphere Application Server for z/OS
	Running the IMS Java Sample Applications on WebSphere Application Server V5 for z/OS
	Installing the Data Source for the IMS Java Samples on WebSphere Application Server V5 for z/OS
	Installing the IMS Java Sample Applications on WebSphere Application Server V5 for z/OS
	Testing the IMS Java Sample Applications on WebSphere Application Server V5 for z/OS

	Running the IMS Java Sample Applications on WebSphere Application Server V6 for z/OS
	Installing the Data Source for the IMS Java Samples on WebSphere Application Server V6 for z/OS
	Installing the IMS Java Sample Applications on WebSphere Application Server V6 for z/OS
	Testing the IMS Java Sample Applications on WebSphere Application Server V6 for z/OS

	Running Your Applications on WebSphere Application Server for z/OS
	Running Your Applications on WebSphere Application Server V5 for z/OS
	Setting the WebSphere Application Server V5 for z/OS Classpath
	Installing the Data Source for Your Application on WebSphere Application Server V5 for z/OS
	Installing Your Application on WebSphere Application Server V5 for z/OS
	Adding the XML Files to the Application Classpath on WebSphere Application Server V5 for z/OS
	Enabling J2EE Tracing with WebSphere Application Server V5 for z/OS
	Specifying the Level of Tracing
	Specifying the Application Server and the Package to Trace
	Specifying at Runtime the Application Server and the Package to Trace

	Running Your Applications on WebSphere Application Server V6 for z/OS
	Setting the WebSphere Application Server V6 for z/OS Classpath
	Installing the Data Source for Your Application on WebSphere Application Server V6 for z/OS
	Installing Your Application on WebSphere Application Server V6 for z/OS
	Enabling J2EE Tracing with WebSphere Application Server V6 for z/OS
	Specifying the Level of Tracing
	Specifying the Application Server and the Package to Trace
	Specifying at Runtime the Application Server and the Package to Trace

	Developing Enterprise Applications that Access IMS DB
	Bean-Managed EJB Programming Model
	Transaction Demarcation Using the javax.transaction.UserTransaction Interface
	Transaction Demarcation Using the java.sql.Connection Interface

	Container-Managed EJB Programming Model
	Servlet Programming Model
	Programming Requirements for WebSphere Application Server for z/OS
	Deployment Descriptor Requirements for IMS Java

	Chapter 4. Remote Data Access with WebSphere Application Server Applications
	Downloading IMS Java Files for Remote Database Services
	Configuring the Application Servers for IMS Java Remote Database Services
	Configuring the V5 Application Servers for IMS Java Remote Database Services
	Mapping Hostnames for the Client and Server
	Installing the Data Source on WebSphere Application Server V5 for z/OS
	Installing the EAR file on WebSphere Application Server V5 for z/OS
	Adding the XML Files to the EAR Classpath
	Installing the IMS Distributed JDBC Resource Adapter on WebSphere Application Server V5

	Configuring the V6 Application Servers for IMS Java Remote Database Services
	Mapping Hostnames for the Client and Server
	Installing the Data Source on WebSphere Application Server V6 for z/OS
	Installing the EAR file on WebSphere Application Server V6 for z/OS
	Installing the IMS Distributed JDBC Resource Adapter on WebSphere Application Server V6

	Running the IMS Java IVP for Remote Database Services
	Running the IMS Java IVP for Remote Database Services on WebSphere Application Server V5
	Setting the WebSphere Application Server V5 for z/OS Classpath
	Installing the Data Source for the IVP on the Client Side
	Installing the IVP on the Client Side
	Testing the IVP on WebSphere Application Server V5

	Running the IMS Java IVP for Remote Database Services on WebSphere Application Server V6
	Setting the WebSphere Application Server V6 for z/OS Classpath
	Installing the Data Source for the IVP on the Client Side
	Installing the IVP on the Client Side
	Testing the IVP on WebSphere Application Server V6

	Running the IMS Java Sample Applications for Remote Database Services
	Running the IMS Java Sample Applications on WebSphere Application Server V5
	Setting the WebSphere Application Server V5 for z/OS Classpath
	Installing the Data Source for the IMS Java Samples on the Client Side
	Installing the IMS Java Sample Applications on the Client Side
	Testing the Phonebook Sample on WebSphere Application Server V5
	Testing the Dealership Sample on WebSphere Application Server V5

	Running the IMS Java Sample Applications on WebSphere Application Server V6
	Setting the WebSphere Application Server V6 for z/OS Classpath
	Installing the Data Source for the IMS Java Samples on the Client Side
	Installing the IMS Java Sample Applications on the Client Side
	Testing the Phonebook Sample on WebSphere Application Server V6
	Testing the Dealership Sample on WebSphere Application Server V6

	Running Your Application on WebSphere Application Server
	Running Your Application on WebSphere Application Server V5
	Setting the WebSphere Application Server V5 for z/OS Classpath
	Installing the Data Source on the Client Side
	Installing the Application on the Client Side
	Enabling J2EE Tracing with WebSphere Application Server V5
	Specifying the Level of Tracing
	Specifying the Application Server and the Package to Trace
	Specifying at Runtime the Application Server and the Package to Trace

	Running Your Application on WebSphere Application Server V6
	Setting the WebSphere Application Server V6 for z/OS Classpath
	Installing the Data Source on the Client Side
	Installing the Application on the Client Side
	Enabling J2EE Tracing with WebSphere Application Server V6
	Specifying the Level of Tracing
	Specifying the Application Server and the Package to Trace
	Specifying at Runtime the Application Server and the Package to Trace

	WebSphere Application Server EJBs
	Transaction Semantics and Server-Side EJB Types
	Client-Side EJB Security Semantics

	Chapter 5. DB2 UDB for z/OS Stored Procedures
	Configuring DB2 UDB for z/OS for IMS Java
	Running the IMS Java IVP from DB2 UDB for z/OS
	Running the IMS Java Sample Application on DB2 UDB for z/OS
	Running Your Stored Procedure from DB2 UDB for z/OS
	Developing DB2 UDB for z/OS Stored Procedures that Access IMS DB

	Chapter 6. CICS Applications
	Configuring CICS for IMS Java
	Running the IMS Java IVP on CICS
	Running the IMS Java Sample Application on CICS
	Running Your Applications on CICS
	Developing CICS Applications that Access IMS DB

	Chapter 7. JDBC Access to IMS Data
	Comparison of Hierarchical and Relational Databases
	Supported SQL Keywords
	SELECT Statement Usage
	Selecting Multiple Segments
	Selecting All Fields in a Segment
	Segment-Qualified Fields
	Retrieving XML Using the SELECT Statement
	Summary of SELECT Statement Usage

	INSERT Statement Usage
	DELETE Statement Usage
	UPDATE Statement Usage
	FROM Clause Usage
	PCB-Qualified SQL Queries
	Summary of FROM Clause Usage

	WHERE Clause Usage
	Non-DBD-Defined Fields in the WHERE Clause
	Summary of WHERE Clause Usage

	Supported SQL Aggregate Functions
	SQL Extensions for XML Storage and Retrieval
	retrieveXML UDF
	storeXML UDF

	Supported JDBC Interfaces
	JDBC Prepared Statements for SQL
	Supported JDBC Data Types
	General Mappings from COBOL Copybook Types to IMS Java and Java Data Types
	JDBC Recommendations for IMS Databases
	Java Metadata Classes for IMS Databases
	Sample Application that Uses JDBC
	Imported Packages for JDBC Access to IMS Databases
	Connections to IMS Databases

	Chapter 8. XML Storage in IMS Databases
	Decomposed Storage Mode for XML
	Intact Storage Mode for XML
	Side Segments for Secondary Indexing
	DBDs for Intact XML Storage

	XML Schema
	XML Type Representation
	JDBC Interface for Storing and Retrieving XML

	Chapter 9. Problem Determination
	Exceptions
	How Exceptions Map to DL/I Status Codes
	SQLException Objects

	XML Tracing for IMS Java
	WebSphere Application Server Security Requirements for XML Tracing
	Enabling XML Tracing
	Tracing the IMS Java Library Methods
	Tracing Your Application

	Debugging an Unresettable JVM in a JMP or JBP Region

	Appendix A. Preparing to Run the Dealership Samples
	Modifying IMS Stage 1 Input Statements
	Loading the Dealership Sample Databases

	Appendix B. SQL Keywords
	Appendix C. IMS Java Hierarchical Database Interface
	Application Programming Using the DLIConnection Object
	Creating a DLIConnection Object
	Creating an SSAList Object
	Accessing IMS Data Using SSAs

	Notices
	Trademarks

	Bibliography
	IMS Version 9 Library
	Supplementary Publications
	Publication Collections
	Accessibility Titles Cited in This Library

	Index

